
Paul Hudson

XBUDI04
)"$,*/(�8*5)

HACKING WITH SWIFT

COMPLETE TUTORIAL COURSE

Learn to make watchOS
apps with real-world
Swift projectsFREE SAMPLE

Project 1
NoteDictate

www.hackingwithswift.com2

Setting up
In this project you'll produce an application that lets users dictate notes directly to their watch,
then browse through and read previous notes. In doing so you’ll learn how to show tables of
data for the user to choose from, how to move between different screens of information, and
how to convert the user’s voice into text so it can be read.

Yes, I realize that sounds quite a lot, but don’t worry: this project is deliberately designed to
take it slow so everyone can learn. The pace picks up in later projects, but if you hit problems
you can always refer back here as a reminder.

Let’s get started: launch Xcode, and choose "Create a new project" from the welcome screen.
You’ll be asked to choose a template for the new project, so please choose watchOS > iOS
App with WatchKit App.

For Product Name enter Project1, then make sure you have Swift selected for language. This

www.hackingwithswift.com 3

Project 1: NoteDictate

screen contains four different checkboxes that affect what kind of template you’re given. None
of the projects in this book use the bottom two, so they should always be unchecked. For this
project, I’d like you to uncheck all four.

One of the fields you'll be asked for is "Organization Identifier", which is a unique identifier
usually made up of your personal website domain name in reverse. For example, I would use
com.hackingwithswift if I were making an app. You'll need to put something valid in there if
you're deploying to devices, but otherwise you can just use com.example.

Now click Next again and you'll be asked where you want to save the project – your desktop is
fine. Once that's done, you'll be presented with the example project that Xcode made for you.

The first thing we need to do is make sure you have everything set up correctly, and that means
running the project as-is.

This is important: Because watchOS apps ship inside iOS apps, your template gives you both
a watchOS app and an iOS app. When you click the Play triangle button at the top-left of the

www.hackingwithswift.com4

Setting up

Xcode window it will launch the iOS app by default. That’s often what you want, but for most
of this book we want to choose something else.

In the top-left corner of Xcode you’ll see a play button and a pause button. Immediately to the
right of that you’ll see “Project1 > iPhone 7 Plus”, which is the active build scheme – the thing
that will get built and run when you click the play button.

What I’d like you to do is click the Project1 part of that button, and choose Project1 WatchKit
App > iPhone 7 Plus + Apple Watch Series 2 - 42mm. There are lots of other sizes with
various paired iPhones, but this one is a common configuration.

What you’ve done is tell Xcode you want to build and run the watchOS app, rather than the
iOS app it’s bundled inside. So, go ahead and press the play button now to build and run your
app. It will take a little while at first because Xcode will launch the iOS Simulator and the
Watch Simulator, both of which have to boot up their respective operating systems before your
app can run.

Eventually you’ll see our app, such as it is. Our “app” just shows an empty window – it does
nothing at all, at least not yet. You’ll see the time in the top-right corner, which is
automatically inserted by watchOS, cutting your available screen space even further.

You'll be starting and stopping projects a lot as you learn, so there are three basic tips you need

www.hackingwithswift.com 5

Project 1: NoteDictate

to know:

• You can run your project by pressing Cmd+R. This is equivalent to clicking the play
button.

• You can stop a running project by pressing Cmd+. when Xcode is selected.
• If you have made changes to a running project, just press Cmd+R again. Xcode will
prompt you to stop the current run before starting another. Make sure you check the "Do
not show this message again" box to avoid being bothered in the future.

Obviously this is a pretty dull app as it stands, so let’s dive right into making something
better…

www.hackingwithswift.com6

Designing our interface
watchOS makes extensive use of tables, just like iOS, macOS, and tvOS. These are vertically
scrolling lists of choices for the user to select from. On iOS you can see these in the Settings
app, the Mail app, in most Twitter apps, and more. On watchOS you can also find a table in the
Settings app, as well as the Reminders app, the Phone app, and more.

If you’ve used table views on other Apple platforms, the watchOS approach will surprise you
with its simplicity: you tell it up front precisely how many rows you want and what’s in them,
and that’s it. All rows in your table get loaded immediately, even though they aren’t visible, so
you don’t need to worry about the table rows once they are created.

Keep in mind what I said already about resource constraints: there isn’t a lot of screen space,
and creating all the rows up front has a cost attached to it. As a result of those two combined,
Apple recommends you don’t show more than 20 rows in your table at a time – any more just
wouldn’t be a pleasant experience.

On the left of your Xcode window should be the project navigator, showing you the files inside
your project. If you don’t see it, press Cmd+1 to show it now.

You’ll see three groups inside there: “Project1” contains the code for your iOS app, “Project1
WatchKit App” contains the user interface for your watchOS app, and “Project1 WatchKit
Extension” contains the code that drives the user interface.

For now, I’d like you to open the “Project1 WatchKit App” group, and inside there you’ll see a
file called Interface.storyboard. Please select that now, and you’ll see Xcode switch into a new
layout commonly called Interface Builder, or IB for short. This is a graphical user interface
designer that lets you visually design how you want your app to look.

Now, on iOS, macOS, and tvOS, Interface Builder is optional: you can design your interfaces
visually or do it all in code, depending on how you like to work. But on watchOS you don’t
have a choice: you either use IB, or you don’t make apps for watchOS. This makes your life
significantly easier, because there’s only One Right Way to do things. It also makes my life
easier, because there’s only one thing to teach – hurray for simplicity!

www.hackingwithswift.com 7

Project 1: NoteDictate
easier, because there’s only one thing to teach – hurray for simplicity!

When you selected Interface.storyboard, you should see a large black square with rounded
edges, mimicking the Apple Watch display. It’s called a “storyboard” because you can add
more screens and position them around each other, just like a movie storyboard.

For now, we’re going to add only two things: a table that will show a list of notes the user has
already dictated, and a button to let them add more.

If you press Cmd+Shift+L, Xcode should show you its Object library, which is a collection of
controls you can drag out onto the canvas – it starts with a yellow circle that says “Interface
Controller” next to it. If you don’t see that, press Ctrl+Alt+Cmd+3. Notice it has a filter text
box at the top, which is helpful to let you find controls quickly – just type a few letters of what
you’re looking for in there.

www.hackingwithswift.com8

Designing our interface

Look for “Table”, and drag one into the black space on the canvas. You’ll see “Table Row”
appear in the Watch screen, which is where we can design what our table rows should look
like. The table automatically takes up only the room it needs, so if it has three rows it will
expand to fit them. Even better, watchOS automatically makes the whole screen scroll if your
interfaces are too long, so if we added 20 items the user could just scroll down to see the
others.

www.hackingwithswift.com 9

Project 1: NoteDictate

You’ll see that working soon enough, but for now let’s finish with the table. We’re just going
to show some text in each row, so we need add a text label to that row. This is done using a
special “Label” component from the object library, so find one of them and drag it into where
it says “Table Row”.

www.hackingwithswift.com10

Designing our interface

Like the table, our new label automatically takes up only the space it needs. If you look
carefully, the table row has a dark gray background color against the main screen’s black
color. If you look even more carefully, you’ll see that the label is aligned to the top left of the
row, which doesn’t look great.

To fix this, we can ask IB to adjust the vertical alignment of our label so that its sits centered
inside its container. This won’t make the row height change, just make the label sit more
attractively inside it. To do this, select the label then press Alt+Cmd+4 to active the attributes
inspector – this is a large set of tools on the right-hand of your Xcode window.

The attributes inspector lets you change a number of built-in properties for all of WatchKit’s
components. In the case of labels, that means things like what text it contains, what color it is,
what font is used, and so on. Right now, though, we’re interested in the vertical alignment
property, so scroll down until you see the “Alignment” header and change Vertical from Top
to Center.

www.hackingwithswift.com 11

Project 1: NoteDictate

Alongside the table we also need a button to let the user add new notes. This is much easier:
WatchKit has a dedicated button component that does everything we need. Find it in the object
library, then drop it below the table.

By default, buttons occupy the full width of the screen, have a dark gray background color, and
the title “Button”. You should still have the attributes inspector open, so when the button is
selected you can adjust its properties.

www.hackingwithswift.com12

Designing our interface

First, change the Title property from “Button” to “Add New Note”. Now look for the Color
property that’s under Background property – that’s the one controlling the background color of
the button. It should have a white rectangle with a red line through, which means “default
color”, or dark gray for buttons. If you click that white rectangle a color picker should appear,
so go ahead and choose something a bit more interesting than dark gray – I went for a mid-blue
shade often called Dodger Blue.

www.hackingwithswift.com 13

Project 1: NoteDictate

Before we’re done we need to tell Interface Builder how the various parts of our user interface
relate to the code we’re going to write. For example, we’re going to need to refer in code to
that table we just made, and we also need to tell Xcode what should happen when our “Add
New Note” button is clicked.

In IB this is done in quite a peculiar way, but don’t worry: I’ll walk you through it step by step.
With your storyboard still selected, I’d like you to go to the View menu and choose Assistant
Editor > Show Assistant Editor. If you prefer shortcuts, you can also press Alt+Cmd+Return to
activate it, or even click the small overlapping circles icon in the top-right of your Xcode
window.

Regardless of how you activate it, the assistant editor splits your Xcode window in two: on the
top you’ll see the storyboard you were working on, and on the bottom you’ll see the code that
belongs to that storyboard. Some people like to have their assistant editor split vertically so one
window is on the left and the other on the right, but I find the horizontal split easiest – feel free
to experiment by going back to the View menu and choosing Assistant Editor > Assistant

www.hackingwithswift.com14

Designing our interface

Editors On Right or Assistant Editors on Bottom.

What you should see in the bottom (or right) part of Xcode is the code for
InterfaceController.swift. The assistant editor should use “automatic mode” by default, which
means it automatically tries to figure out the most useful file to show to match whatever you’re
viewing in the storyboard. All being well, you’ll see something like “Automatic >
InterfaceController.swift”, as seen in the screenshot below:

If you don’t see InterfaceController.swift, or if you see some strange variant such as
“InterfaceController.swift (Interface)” it means the assistant editor got it wrong and you need
to select the file manually instead. To do that, click Automatic and select Manual instead, then
choose Project1 > Project1 WatchKit Extension > InterfaceController.swift.

Whether you’re using manual mode or automatic, the end result is that you should see your
storyboard and the code for InterfaceController.swift at the same. Now for the strange part:
inside Interface Builder you should see a pane containing a tree structure of what’s in your user
interface. If you don’t already see it, try clicking on the table on your IB canvas then going to
the Editor menu and choosing Show Document Outline. In the event you only see the option
“Hide Document Outline” in that menu, it means the document outline is already visible.

www.hackingwithswift.com 15

Project 1: NoteDictate

This document outline shows you exactly what’s in each screen in your app, all neatly
organized so you can see when controls are nested inside other controls. This is useful for the
next step: we need to draw a line from controls in our UI right into the code of
InterfaceController.swift.

What we’re doing is telling Xcode “this piece of UI should match up to this property in my
class,” so it knows how the two work together. You literally have to drag a line from the UI
into your code, but because the UI has lots of nested items – the label is inside a group, which
is inside a table row container, etc – it’s easy to click the wrong thing by accident.

Instead we’re going to be drawing lines using the document outline. So, find “Table” in the
document outline, and click on it. Now hold down the Ctrl key then click and drag from
“Table” down into InterfaceController.swift. A blue line should be drawn from “Table”,
following your mouse pointer around as you move. This is called a “Ctrl-drag” and is an
important skill for IB.

www.hackingwithswift.com16

Designing our interface

What you need to do is drag just below the line that starts class InterfaceController. As you
do that, a horizontal blue line should appear, with a tooltip saying “Insert Outlet”.

Now release your mouse button, and a balloon should appear asking you to fill in some fields.
For Name please enter “table”, the Type property should read “WKInterfaceTable” (if it
doesn’t, you dragged from the wrong UI element!), and finally make sure Storage is set to
“strong”.

www.hackingwithswift.com 17

Project 1: NoteDictate

When those fields are filled in please click the Connect button, and you’ll see a new line of
code appear: @IBOutlet var table: WKInterfaceTable!. Let’s break that down:

• The @IBOutlet part means “this is important to IB,” but that’s all – it has no real meaning
in code other than to signify this attribute belongs to IB.

• The var part means “this is a variable”, which means it stores a value that might change.
• The table part is the name of the variable, for us to use in code.
• The WKInterfaceTable part is the type of the variable: a table from WatchKit. Most
WatchKit things have WK in front of them

Now, the more observant among you will have noticed that the variable type is actually
WKInterfaceTable! rather than WKInterfaceTable. There’s a subtle difference but an
important one, so let me take a brief detour to explain:

• A WKInterfaceTable variable must contain a table object, and can never not contain one.
So you can’t destroy the table and say “sorry, variable, but you’re empty now.” It must
always have a table, so it’s safe to use.

• A WKInterfaceTable! variable – with the added exclamation mark – might hold a table or
it might not. It can have an empty value, known as nil in Swift.

www.hackingwithswift.com18

Designing our interface

• Swift has a third variety, written with a question mark like this: WKInterfaceTable?. This
might hold a table or it might not.

Now most people are able to understand the difference between “this must definitely always
have a value” and “this might have a value sometimes, but other times it might not.” The
confusion comes with the last two: ! and ? both allow variables to have a value or be nil, so
why do we have two?

The difference comes in the way you use the variables. When a variable is declared using a
question mark Swift won’t allow you to use it unless you always check that it has a value.
Trying to use a variable that doesn’t have a value will cause your app to crash, so if you use a
WKInterfaceTable? for example Swift will always force you to check it has a value before
you use it.

When you use an exclamation mark – WKInterfaceTable! – Swift won’t force you to check
it, and instead relies on you to know what you’re doing.

Again, trying to use a variable that has an empty (nil) value is a programmer error, and your
app will crash. That leads to another question: why ever use ! rather than ? if the latter always
has us check to be sure there’s a value. And more importantly, why does Interface Builder
create its variables using ! rather than ?.

The answer is down to pragmatic programming. When your interface is initially created –
 when watchOS is busy allocating enough RAM for your screen – the table hasn’t actually
been created yet, because that comes a few milliseconds later. So, a regular
WKInterfaceTable wouldn’t work because our table starts life as being nil.

But as soon as the interface has been loaded and your code is ready to run, the table has been
created and will remain created for as long as your screen exists. If we had to check for a
possible nil value every time we wanted to use the table - which will definitely be there unless
something has gone disastrously wrong – it would be frustrating to program.

What ! lets Xcode do is say “this thing will be nil very briefly at the very beginning, but by the

www.hackingwithswift.com 19

Project 1: NoteDictate

time you want to use it will definitely have a value.” This is perfect here because our table will
always exist by the time we need it – and if it doesn’t things have gone so wrong that perhaps a
crash is the best outcome to avoid data corruption.

If you don’t quite understand this just yet, don’t worry about it - once you’ve used it a few
times things should become clearer.

We just created an outlet for our table, so let’s move on: we need to add an action to run some
code when the button is clicked. To do that you need to Ctrl-drag from the button into your
code in InterfaceController.swift. This time I’d like you to drag somewhere specific:

 override func didDeactivate() {
 // This method is called when watch view controller is no
longer visible
 super.didDeactivate()
 }

 <-- drag here!
}

This time the tooltip will say “Insert outlet or action”, like this:

www.hackingwithswift.com20

Designing our interface

When you release your mouse button, the balloon that appears lets you change the Connection
value from Outlet to Action, so please do that. Outlets let you refer to UI components in code,
whereas actions are methods in your code that get executed when something happens to the
component in question – in this case when the button is clicked.

For the Name value enter “addNewNote”, then click Connect.

www.hackingwithswift.com 21

Project 1: NoteDictate

This will create two lines of code for you:

@IBAction func addNewNote() {
}

Just like @IBOutlet, the @IBAction attribute doesn’t have any special meaning in Swift - it’s
just there to mean “this is something Interface Builder cares about.”

What this code does is declare a new method called addNewNote(). Everything inside the
opening and close braces form part of that method – code that will run when the method is
called. Right now it’s empty, but we’ll fill it soon enough.

Tip: If you were wondering, the only difference between a function and a method is that
methods are part of classes and structs, whereas functions are just loose. Swift uses the same
func keyword for both of them.

We need to do one more thing before we’re done, which is to connect our table row label to
something so we can refer to it in code. This is a little bit trickier: we can’t just connect it
straight to InterfaceController.swift, because there could be lots of table rows so which one
should the code refer to?

The watchOS solution is to create a new data type that refers specifically to one individual row
of data. You can then connect the label to that new data type, so each row can refer to its own
label.

Let’s do it now: go to the File menu and choose New > File, then choose watchOS > WatchKit
Class.

www.hackingwithswift.com22

Designing our interface

When you click next, you’ll be asked to provide a Class and Subclass Of. For Subclass Of
please enter NSObject, which is what’s called a “universal base class” – the thing that all other
data types build on in WatchKit. For Class please enter “NoteSelectRow”, which is the name
we want to use for this new data type.

When you click Next, you’ll see another screen, and this is the part many people screw up.
Don’t be tempted to click Create without following these instructions carefully!

Warning: Seriously, if you don’t read this bit, your code probably won’t work.

www.hackingwithswift.com 23

Project 1: NoteDictate
Warning: Seriously, if you don’t read this bit, your code probably won’t work.

Xcode is asking you both where you want to save the file, and how you want it to be
configured for your project. Leave the file selection part alone, and instead focus on the bottom
of this window: for Group you should make sure “Project1 WatchKit Extension” is chosen,
and in the Targets box make sure “Project1 WatchKit Extension” is the only checkbox that is
selected.

When you’ve done that, click Create. This will create a new file called NoteSelectRow.swift
and open it for editing immediately, but I’d like you to re-select Interface.storyboard because
we want to hook that up to our UI.

Using the document outline (the tree layout to the left of your IB canvas), look for “Table”.
You should see it has a small disclosure arrow to its left, so hold down the Alt key and click it
– that will open it, then open all its children, grand-children, and so on. You can open them all
by hand if you like, but you do need them all open.

www.hackingwithswift.com24

