
Paul Hudson

Objective-C for
Swift Developers

HACKING WITH SWIFT

FREE SAMPLE

Chapter 1
Overview

www.hackingwithswift.com2

Concepts
We’re going to jump into the deep end and look at the biggest ways Objective-C differs from
Swift. I really want to dive into some code, but there a few things you need to understand first
so please bear with me – the code is coming soon, I promise!

The most important thing to know about Objective-C is this: it’s a strict superset of C, which is
a language that’s over 40 years old. This means that valid C code is also valid Objective-C
code, and you can mix and match them freely. You can even use C++ with Objective-C, which
usually has the moniker Objective-C++, but this is less common.

C and C++ bring with them a lot of baggage, and the places where C and Objective-C come
together are a bit rough around the edges, but it does mean it’s easy to make use of C- and C+
+-based code in Objective-C projects. The first game I ever wrote for iOS was written in
Objective-C++, where a tiny amount of Objective-C acted as a shim to call my underlying C++
code.

One immediately obvious piece of baggage are header files: when you create a class in
Objective-C, it’s made up of YourClass.h (a header file) and YourClass.m (the implementation
file). The “m” originally stood for “messages”, but most people today consider it the
“iMplementation” file. Your header file describes what the class exposes to the outside world:
properties that can be accessed and methods that can be called. Your implementation file is
where you write the actual code for those methods.

This split between H and M doesn’t exist in Swift, where an entire class or struct is created
inside a single file. But in Objective-C it’s important: when you want to use another class, the
compiler only needs to read the H file to understand how the class can be used. This lets you
draw on closed-source components such as Google’s analytics library: they give you the H file
that describes how their components work, and a “.a” file that contains their compiled source
code.

The second immediately obvious piece of baggage is the C preprocessor. This gets its own
chapter later in the book for people who really want to dig in to how it works, but the concept

www.hackingwithswift.com 3

Overview

is quite simple: the preprocessor is a compilation phase that takes place before the Objective-C
code is built, which allows it to rewrite your source code before it’s compiled. This doesn’t
exist in Swift, and with good reason: the main reasons for using it are header files (which Swift
doesn’t have) and creating macros, which are code definitions that get replaced when your
source code is built. For example, rather than writing 3.14159265359 repeatedly, you can
create a macro called PI and give it that value – it’s a bit like a constant in Swift, but as you’ll
see in the Preprocessor chapter these macros can do a lot more, which is both good and bad.

Easy differences
Swift is a much more advanced language than Objective-C, and as such has some features that
simply do not exist in Objective-C.

Specifically, Objective-C does not support the following:

• Type inference.
• Operator overloading.
• Protocol extensions.
• String interpolation.
• Namespaces.
• Tuples.
• Optionals.
• Playgrounds.
• guard and defer.
• Closed and half-open ranges.
• Enums with associated values.

Structs exist in Objective-C, but are used much less frequently than in Swift – Objective-C is,
as you might imagine given its name, aggressively focused on objects!

Objective-C shares most operators with Swift, although it has retained the ++ and -- operators
that were deprecated in Swift 2.2. The nil coalescing operator is written as ?: rather than ??.

www.hackingwithswift.com4

Concepts

How things are named
Early versions of Swift – 1.0 to 2.2 – used almost identical naming conventions for methods
and properties as Objective-C did. In Swift 3.0, Apple introduced the Great Cocoa
Renamification, which involved renaming almost every method and property to be “more
Swifty”, which caused pretty much every existing project to break until it was upgraded to use
the new naming conventions.

As you’re learning Objective-C now, you’ll need to perform the Great Cocoa Renamification
in reverse as you work, effectively figuring out the names of Objective-C methods by
reversing Apple’s process.

Here’s what that means in detail:

 1. In Objective-C, the first parameter to a method does not have a label, so the label for the
first parameter is usually part of the method name. For example,
UIFont.preferredFont(forTextStyle:) in Swift is written as [UIFont
preferredFontForTextStyle:] in Objective-C.

 2. Objective-C likes to repeat the names of things to make its methods clear. That means the
append() method of NSAttributedString in Swift becomes appendAttributedString in
Objective-C, and the components(separatedBy:) of strings becomes
componentsSeparatedByString:.

 3. Some things that are properties in Swift are methods in Objective-C. For example,
UIColor.blue in Swift is [UIColor blueColor] in Objective-C.

 4. Many class names need to have an “NS” prefix before them in Objective-C. For example,
NSUserDefaults, NSFileManager, NSNotificationCenter, and NSUUID. Other than that
they work identically to their Swift counterparts.

 5. Objective-C uses a C-based API for Core Graphics and Grand Central Dispatch. This was
also how Swift worked in Swift 2.2 and earlier, and I’m afraid it involves some fairly long
function names such as CGContextSetFillColorWithColor().

 6. Some constants in Swift have been namespaced, whereas in Objective-C they are global.
For example, NSTextAlignment.left in Swift is just NSTextAlignmentLeft in Objective-

www.hackingwithswift.com 5

Overview

C.
 7. If you are using a method that has a completion closure, it’s required in Objective-C even

when it’s nil.

Realistically, it’s the combination of 1 and 2 that cause the biggest difference. Here are some
examples in Swift and Objective-C so you can see what you’re working with – notice how
Objective-C adds lots of extra words into its method names so they are unmistakably clear:

// find the index of an item in an array
names.index(of: "Taylor")
[names indexOfObject: @"Taylor"];

// get the current UIDevice
UIDevice.current
[UIDevice currentDevice];

// replace a string
"Hello, world".replacingOccurrences(of: "Hello", with:
"Goodbye")
[@"Hello, world" stringByReplacingOccurrencesOfString:@"Hello"
withString:@"Goodbye"];

// dismiss a view controller
dismiss(animated: true)
[self dismissViewControllerAnimated:true completion:nil];

Once you’ve had to mentally convert a dozen or so method names, you’ll find it becomes
second nature. Just ask yourself the question, “what repetitive words could I add to this method
to make it longer?” Honestly, it’s almost as if Apple made their money selling replacement
keyboards…

Namespaces

www.hackingwithswift.com6

Concepts

The lack of namespaces in Objective-C might not make much sense at first, but it bears some
explanation. A namespace is a way to group functionality together in discrete, re-usable
chunks. When you namespace your code, it ensures the names you use for your classes don’t
overlap the names other people have used because you have additional context. For example,
you could create a class called Person and not have to worry about Apple creating another
class called Person, because the two wouldn’t conflict. Swift automatically namespaces your
code, so that your classes are automatically wrapped inside your module – something like
YourApp.YourClass.

Objective-C has no concept of namespaces, which means it requires that all class names be
globally unique. This is easier said than done: if you use five libraries, those library might each
use three other libraries, and each library might define lots of class names. It’s possible that
library A and library B might both include library C – and potentially even different versions
of it.

This creates a lot of problems, and Apple’s solution is simple and pervasive: use two-, three-,
or four-letter prefixes to make each class name unique. Think about it: UITableView,
SKSpriteNode, MKMapView, XCTestCase – you’ve been using this prefix approach all along,
perhaps without even realizing it was designed to solve an Objective-C shortcoming!

What, no optionals?
Objective-C doesn’t have any concept of optionals, which will make about half of you cheer
and the other half worry. This caused all sorts of issues when Swift was first announced: all the
Objective-C APIs had to be imported into Swift, and that meant trying to decide whether a
UIView was actually a UIView? – was the view definitely there, or could it actually be nil?

In Swift this distinction really matters: if you try to use a value that is actually nil, your app
crashes. But in Objective-C, working with nil values is perfectly OK: you can send a message
to a nil object, and nothing happens.

Let me repeat that, perhaps with some bold text: you can send a message to a nil object, and
nothing happens. This is unthinkable in Swift, because doing it is considered programmer

www.hackingwithswift.com 7

Overview

error. If you run some code and nothing happens, your first port of call should be checking
whether you messaged nil, because it’s silently ignored.

To help bridge Objective-C and Swift, Apple introduced some new keywords that sort of help
fill the hole left by optionals. It then audited its own APIs to use these new keywords, which is
why over time some APIs in Swift have changed their optionality. These are covered in the
Nullability chapter much later in the book – they bring helpful improvements to Objective-C,
but adoption is extremely low so you might never see them in the wild.

Safety
Living without optionals and being able to message nil objects should give you some hints that
Objective-C is less safe than Swift.

However, the truth is that this lack of safety goes much deeper: Objective-C lets you force one
data type into another, it only recently introduced the concept of generics (e.g. arrays that can
hold only strings), it has none of the advanced string functionality that lets Swift mix ASCII
and emoji with ease, it lets you read array values that don’t exist, your switch blocks don’t
need to be exhaustive, it makes almost everything a variable rather than a constant, and much
more.

When you’re coming from the Swift world, these features seem like bugs, and make Objective-
C appear a bit like the wild west. To some extent, that’s true: if you’re writing natural Swift,
then Objective-C is so laid back that you’ll wonder how Apple managed to build their whole
ecosystem on top of it. However, think for a moment what it’s like for Objective-C developers
coming to Swift: suddenly the compiler has become significantly more pedantic, and you need
to spell out every last thing in order to make your code build. “Yes, I really do want to put that
UInt into an Int” is quite tiresome at first, and simply wasn’t necessary in Objective-C.

There is one small thing you can do to help make Objective-C a little bit less dangerous:
whenever you create an Objective-C project, go to the Build Settings tab in Xcode and set
“Treat Warnings as Errors” to Yes. That one change will stop you from making some terrible
mistakes with the language, for example trying to squeeze a number into a string.

www.hackingwithswift.com8

Basic syntax
Let’s look at some basic Objective-C now: variables, conditional statements, switch blocks,
and loops.

The best way to experiment with these is to create a new project in Xcode: go to File > New
Project, then choose macOS > Application from the left-hand side, and Command Line Tool.
Yes, I realize you probably haven’t made many command-line apps before, but trust me on
this: it’s the closest thing Objective-C has to a playground, and helps keep things simple.

I know it’s obvious, but: make sure you choose Objective-C for your project’s language!
As you’re coming from the world of Swift, that will be the default language option, so please
change it.

What’s in the template?
When you create a project from this template, you’ll be given only one file: main.m. Inside
there are only a few lines of code, but even those few introduce several major concepts. You
should see something like this:

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {
 @autoreleasepool {
 // insert code here...
 NSLog(@"Hello, World!");
 }
 return 0;
}

If you have some C experience, you’ll recognize most of that already as just being the regular
entry point for command-line applications. But there are two parts that are unique to
Objective-C: @autoreleasepool and @“Hello, World!”.

www.hackingwithswift.com 9

Overview

The @ symbol gets abused extensively in Objective-C, so you’d better get used to typing it a
lot. What it means is “this next bit is Objective-C, and definitely not C.” NSLog() is a function
akin to print() in Swift, and the template code writes out a basic message. Without the @ sign
before “Hello, World!” that message would be interpreted as a C string: an array of characters
in ASCII, ending with a 0. Objective-C, like Swift, has its own string data structure that offers
Unicode compatibility, methods for manipulation, and more. NSLog() expects to receive one
of these Objective-C strings, not a C string, which is why the @ is required.

The @autoreleasepool means “I’m going to be allocating lots of memory; when I’m finished,
please free it up.” Everything inside the opening and closing braces forms part of this pool,
which right now is the entire program.

It’s worth me briefly mentioning the C code too, in particular the way the function is written.
Here it is again:

int main(int argc, const char * argv[]) {

And here’s what each thing means:

• int: This function returns an integer.
• main: The function is named main().
• int argc: The first parameter is an integer called argc.
• const char * argv[]: The second parameter is an array of strings called argv.

This main() function, with those parameter, is the standard way to create command-line
programs, and it will automatically be called when the program is run.

A few other small things before we move on. First, note that return is used to return a value
from a function, just as with Swift. Second, every statement must end with a semi-colon. In our
code, that means NSLog() and return both end with a semi-colon. Third, // is a comment, like
Swift.

Importing headers

www.hackingwithswift.com10

Basic syntax

There was one line I didn’t discuss, which was the very first one: #import <Foundation/
Foundation.h>. This is a preprocessor directive, which I mentioned briefly already. It means
this code gets replaced by the preprocessor even before your code gets built. Any line of code
that begins with # is a preprocessor directive, so watch out for it.

This particular directive means “find the header file for Foundation (Apple’s fundamental
Objective-C framework), and paste it here.” The preprocessor literally takes the contents of
Foundation.h – a header file that itself imports many other headers – and copies it in place of
that #import line.

If you’ve written C or C++ code before, you’ll be more familiar with the #include directive,
which almost does the same thing. However, #import has a subtle extra feature that makes it
much nicer to use: if you #import a header it will only ever be included once, whereas with
#include it can potentially be included several times. C programmers often workaround the
problems of #include by writing header guards, but Objective-C’s #import does all that for
you.

When you #import a system library, you place the library’s name in angle brackets, aka Pulp
Fiction brackets. For example, #import <UIKit/UIKit.h>. However, when you import your
own header files, you use double quotes, like this: #import "MyClass.h". This distinction is
important: using angle brackets means “search for this header in the system libraries,” and
using double quotes means “search for this header in the system libraries, but also in my
project.”

Creating variables
Objective-C does not support type inference, and, unlike Swift, almost everything is created as
a variable. In practice, this means you need to tell Xcode the type of every piece of data you
want to work with.

To get started, replace the existing // insert code here... comment with this:

int i = 10;

www.hackingwithswift.com 11

Overview

That creates a new integer and assigns it the value 10. Notice there’s no let or var in there –
these things are variable by default. If you want to make it a constant, you should use this
instead:

const int i = 10;

However, you’re swimming against the current: few people bother to do this.

To create a string, you need to use the NSString class. Yes, it’s a class rather than a struct; yes,
the “NS” is another namespace prefix; and yes, you need to use the @ symbol just like before.

Try writing this:

NSString str = @"Reject common sense to make the impossible
possible!";

When you try to build that, Xcode will give you an error message: “Interface type cannot be
statically allocated.” This is an example of a Really Bad Error Message, which ought to make
Swift developers feel right at home.

What Xcode means is that any kind of object, like NSString, must be allocated using a special
approach called pointers. If you think back to how hard optionals were to grasp in Swift,
pointers are just as bad in Objective-C. I’m going to go into more detail on pointers later, but
the least you need to know is this: a pointer is a reference to a location in memory where some
specific data lives. If you imagine a photo that took up 30MB of RAM, you wouldn’t want to
copy all that data around each time you used the photo. Instead, you can pass around a pointer
that specifies where in RAM the 30MB is, and that’s good enough.

In Objective-C, all objects must be pointers, and NSStrings are objects. So, we need to write
this instead:

NSString *str = @"Reject common sense to make the impossible
possible!";

www.hackingwithswift.com12

Basic syntax

Note the asterisk, which is what marks the pointer. So, str isn’t an NSString, it’s just a pointer
to where an NSString exists in RAM.

Let’s briefly look at one more data type: arrays. These are called NSArray in Objective-C, and
you need @ to start the array. I’ll make an array that contains strings, so I’ll need an @ for
each of the strings, like this:

NSArray *array = @[@"Hello", @"World"];

I’ll be going into more detail about strings and other data types later on, but for now you know
enough about creating variables to move on.

Conditions
Conditional statements mostly work the same as in Swift, although you must always type
parentheses around your conditions. These parentheses, like the line-terminating semi-colons,
are often accidentally missed off when you’re coming from Swift, but Xcode will refuse to
compile until you fix it. This says a lot about Objective-C: it won’t bat an eyelid while you
commit typecasting war crimes, but will throw a tantrum if you forget a semi-colon.

Here’s a basic conditional statement:

int i = 10;

if (i == 10) {
 NSLog(@"Hello, World!");
}

However, Objective-C does introduce one twist, which simultaneously introduces a whole new
class of bugs while saving you a couple of keystrokes: if the content of your conditional
statement is just one statement, you can omit the braces. For example, these two pieces of code
do exactly the same thing:

if (i == 10) {

www.hackingwithswift.com 13

Overview

 NSLog(@"Hello, World!");
} else {
 NSLog(@"Goodbye!");
}

if (i == 10)
 NSLog(@"Hello, World!");
else
 NSLog(@"Goodbye!");

As you’re just at the stage of learning Objective-C, I would suggest you stay away from the
latter option. If you desperately wish to avoid braces, at least write your if statement on a
single line, like this:

if (i == 10) NSLog(@"Hello, World!");

The advantages of this syntax are dubious at best.

Switch/case
If there’s one thing you’re guaranteed to screw up, it’s switch/case in Objective-C. The reason
for this is two-fold: first, Objective-C is significantly less powerful than Swift here so you need
to do more work yourself, and second case statements have implicit fallthrough. This is the
opposite of Swift, and means you nearly always want to write break; at the end of case blocks
to avoid fallthrough.

First, a basic example:

int i = 20;

switch (i) {
 case 20:
 NSLog(@"It's 20!");

www.hackingwithswift.com14

Basic syntax

 break;

 case 40:
 NSLog(@"It's 40!");
 break;

 case 60:
 NSLog(@"It's 60!");
 break;

 default:
 NSLog(@"It's something else.");
}

Notice again the parentheses for switch (i). Run that now and you should see “It’s 20!” printed
out, but try removing the break; statements and you’ll see what I mean about implicit
fallthrough: it will print “It’s 20!” then “It’s 40!”, “It’s 60!” and “It’s something else.” one
after the other. In Objective-C, not having break is equivalent to adding fallthrough in Swift.

Objective-C does have support for pattern matching, but it’s limited to range: you write one
number, then ... with a space on either side, then another number, like this:

switch (i) {
 case 1 ... 30:
 NSLog(@"It's between 1 and 30!");
 break;

 default:
 NSLog(@"It's something else.");
}

There’s one catch you need to be aware of, which is a language corner case that’s guaranteed
to bite you sooner or later. It might sound crazy, but here’s the rule: you can’t use the first line

www.hackingwithswift.com 15

Overview

of a case block to declare a new variable unless you wrap the case block in braces.

To demonstrate this, consider the code below:

switch (i) {
 case 10:
 int foo = 1;
 NSLog(@"It's something else.");
}

Objective-C doesn’t require that switch blocks be exhaustive, meaning that we don’t need a
default case – that code would be perfectly valid, if it were not for the fact that I try to declare
a new variable straight after the case.

There are two ways to fix this problem: either place braces around the contents of the case
block, or simply make the NSLog() line come first. Both of these two are legal:

switch (i) {
 case 10:
 {
 int foo = 1;
 NSLog(@"It's something else.");
 }
}

switch (i) {
 case 10:
 NSLog(@"It's something else.");
 int foo = 1;
}

Loops

www.hackingwithswift.com16

Basic syntax

Objective-C has the full set of loop options, including the C-style for loop that was deprecated
in Swift 2.2.

Let’s start off with the most common loop type, known as fast enumeration:

NSArray *names = @[@"Laura", @"Janet", @"Kim"];

for (NSString *name in names) {
 NSLog(@"Hello, %@", name);
}

Remember when I said that the @ symbol was abused extensively in Objective-C? That one
snippet of code has six of them – it’s almost as if Apple makes most of its money shipping
replacement keyboards to developers who have worn down their @ keys.

That code snippet creates an array of names, then loops over each one and prints a greeting,
The syntax for NSLog() might seem particularly bizarre at first, but it’s a result of Objective-C
not having string interpolation. NSLog() is a variadic function, and combines the string in its
first parameter with the values of the second and subsequent parameters. The %@ part is
called a format specifier, and means “insert the contents of an object here” – which in our case
is the name variable.

You can use C-style for loops like this:

for (int i = 1; i <= 5; ++i) {
 NSLog(@"%d * %d is %d", i, i, i * i);
}

%d is another format specifier, and means “int”. Now that I’ve used three in one call, you can
see more clearly how they are replaced in the string: the first %d matches the first i, the
second %d matches the second i, and the third %d matches the i * i.

You can use while just like in Swift, and do/while is identical to Swift’s repeat/while
construct.

www.hackingwithswift.com 17

Overview
construct.

As with conditions, you can omit braces from loops if your loop body contains only one
statement. This has the same dubious cost/benefits, so use it with caution.

Calling methods
There’s a whole chapter on writing methods later on, and I’ll be introducing methods on a
case-by-case basis when looking at common data types, but before all of that I at least want to
show you how methods look.

Consider the following Swift:

let myObject = new MyObject()

In Objective-C, several things change. First, new is a message you send to the MyObject
class, like this:

MyObject *myObject = [MyObject new];

As you can see, you write an opening bracket, your object name, a space, then your message
name, then a closing bracket. Note: although this is technically called “sending a message”, I’ll
be referring to it as “calling a method” from now on because that’s what everyone except
Apple calls it.

Where things get tricksy is when you want to call two methods at once. In Swift you might
write something like this:

myObject.method1().method2()

In Objective-C, you need to balance the brackets on the outermost left-hand side, like this:

[[myobject method1] method2]

When you’re writing Objective-C, you often know exactly what line of code you want to write
so you sometimes start by writing two, three or even four open brackets. Xcode does attempt to

www.hackingwithswift.com18

Basic syntax

complete your brackets for you, but sometimes gets it wrong, which is thoroughly annoying.

One particular place when you are likely to use two method calls on a single line is when
creating objects. You’ve already seen the new method, which allocates memory for an object
and initializes it with some default information. However, you can also run those two parts
individually: allocate some memory with one method, then initialize a value with a second,
like this:

MyObject *myObject = [[MyObject alloc] init];

The alloc is run first to set aside enough RAM to store the object, then init is run to place a
default value into the object. The reason for this separation is down to helper functions, which
in Swift get mapped to all the initializers you’re used to: do you want to create a string from a
file, from a URL, from a format, or something else?

Objective-C method calls look similar to Swift’s, although brackets are used rather than
parentheses, and you don’t use commas between parameters. The lack of commas means that it
is stylistically preferred not to place a space after the colon for named parameters. Here’s an
example in both Swift and Objective-C:

myObject.executeMethod(hello, param2: world)
[myObject executeMethod:hello param2:world];

We’re going to go in to much more detail on methods later on, but for now you know enough
to continue.

Nil coalescing
As with Swift, one useful way of ensuring a value exists is to use nil coalescing. Objective-C
doesn’t have a dedicated ?? operator for this, but instead allows you to hijack the ternary
operator, ?:.

For example, this will print a name or “Anonymous” depending on whether the name variable
has a value:

www.hackingwithswift.com 19

Overview
has a value:

NSString *name = nil;
NSLog(@"Hello, %@!", name ?: @"Anonymous");

www.hackingwithswift.com20

Pointers
If pointers confuse you at first, don’t worry about it: they confuse almost everyone at first.
Worse, you even get pointer pointers, and even pointer pointer pointers – although to be fair
anything beyond double pointers are considered bad style.

A regular variable contains a value, for example a house object. A pointer contains a pointer to
the location of the house, like a signpost – it’s much smaller than the real thing, and all it does
it say “it’s over there.” Pointers allow objects to be passed around efficiently, because if you
send the house object into a function all you’re doing is sending a number in, which is the
location of the house in RAM.

To continue the house metaphor, imagine a white house that had three signposts pointing to it.
If you repaint the house so it’s red, all three signposts are now pointing to the red house. You
don’t have a situation where one is pointing to a new red house and the other two are pointing
to the old one. The same is true with pointers: if you have three pointers that point to the same
object in memory, and you change that object, that change happens to all the pointers.

For now, you need to know that all Objective-C objects must be pointers, so you’ll be using
lots of asterisks. A bit later on you’ll see an example of pointer pointers to handle errors.

Constant pointers
Objective-C developers create variables rather than constants by default, which is the opposite
mindset of Swift developers. In fact, if you asked a random Objective-C developer “how do
you make a constant string?” I’d say it’s 50/50 whether they can give you the right answer first
time.

To put this into context, the below code will not compile:

const i = 10;
i = 20;

That creates a constant integer then tries to change it, which is clearly bad. But this code works

www.hackingwithswift.com 21

Overview

fine:

const NSString *first = @"Hello";
first = @"World";

You can even write this, which evaluates to the same thing:

NSString const *first = @"Hello";
first = @"World";

The reason for this is subtle but important: both of those lines mean “I want to ensure the string
doesn’t change, but I don’t mind if the pointer does.” Remember, all objects are pointers, so
this is equivalent to saying, “I don’t mind if you move your signpost to point somewhere else,
as long as you don’t change my house.”

NSString is an immutable class, which means its value cannot be changed once it has been
created. When you think you’re changing its value, what’s actually happening is that the old
string is destroyed, a new one is created, and the pointer is updated to reflect the change.

We can demonstrate this by using the %p format specifier for NSLog(), which means “print
the pointer of this object.” This is useful for debugging purposes, because it allows you to track
the specific value of an object in memory. In our case, we can see the pointer address change
as a new object is produced. Try this code:

NSString *first = @"Hello";
NSLog(@"%p", first);
first = @"World";
NSLog(@"%p", first);

When I ran that, I got the following output:

2016-05-06 11:56:55.204 OCTest[57100:15178322] 0x100001038
2016-05-06 11:56:55.205 OCTest[57100:15178322] 0x100001078

www.hackingwithswift.com22

Pointers

So, at first the string lived at memory address 0x100001038, but after it was at 0x100001078 –
the pointer has been moved.

If we want to create a string that can’t be changed, what we need is a constant pointer. The
NSString itself is effectively already const because it’s immutable, so we now just need to
make sure no one moves our signpost. To do this, you need to move the const keyword after
the pointer’s asterisk, like this:

NSString * const first = @"Hello";

www.hackingwithswift.com 23

The size of integers
I’ve been using the int data type in the examples so far, because it’s what you’re used to in
Swift. But in practice, you’re far more likely to use a different data type called NSInteger. The
different is subtle, and becoming less important as each year goes by, but for now it matters –
 and it matters in Swift too, so if you’re not sure about number sizes in Swift this will be good
to read.

When the iPhone first launched, it had a 32-bit CPU, which meant numbers were stored in
binary using 32 1s and 0s. From the iPhone 5s onwards, 64-bit has been the standard, which
means that numbers are stored in binary using 64 1s and 0s.

Clearly you don’t want to write two different pieces of code to handle each architecture, so
Apple’s solution is NSInteger: on 32-bit systems this holds a 32-bit number, and on 64-bit
systems it holds a 64-bit number. NSInteger is used extensively across iOS, macOS, tvOS and
watchOS, which means you need to use it to avoid causing problems.

The difference matters less and less each year as more people upgrade to 64-bit iOS devices,
but right now it’s important. Consider, for example, if you saved an array of integers to iCloud,
and a user accesses it from their 64-bit iPhone and also from their 32-bit iPad. If the iPhone
wrote 64-bit integers, the iPad wouldn’t be able to read them correctly.

In this situation – where you need to work with both 64-bit and 32-bit devices – using
NSInteger is the wrong choice. Instead, you should specify the exact size you need using
int32_t or int64_t. That way, the integer size is preserved regardless of what CPU you’re
running on.

This same problem (and the same solution) applies to floating-point numbers: like Swift,
Objective-C has float and double types for holding single-precision and double-precision
floating-point numbers, and CGFloat is designed to map to either float or double depending
on the current CPU.

So, the short and simple version: you should be using NSInteger and CGFloat almost all the
time, with exceptions being when you need to store data across platforms or when you have to

www.hackingwithswift.com24

