
Paul Hudson

Learn the meta-skills you
need to be a better coder
no matter what language

UNIX, GIT, REGEX, SCRUM, AND MORE

Beyond Code

FREE SAMPLE

Chapter 1
The Unix terminal

www.hackingwithswift.com2

Why use the command line?
Every modern operating system has a powerful, user-friendly graphical desktop environment
that is capable of doing amazing things. Sure, some people are Linux lovers or Windows
fangirls, but ultimately they let you surf the same web pages, edit the same Word documents,
and listen to the same music on Spotify.

Why, then, use the command line? It’s a text entry system that dates from the 1960s, it has
hundreds and even thousands of programs that seem arcane to outsiders, and don’t get me
started on how badly documented it is. Despite those huge flaws, the command line still
delivers incredible power to describe complex operations in a flexible, concise way – you can
do things in seconds that would take hours of work in a graphical interface.

I’m going to start by giving you a brief tour of the command line, giving you just enough
commands so you can navigate around your system competently. If you have used the
terminal before, you should skip this chapter. In the subsequent chapters we’ll look in more
detail at specific commands, and how they can be combined together to create new commands
to solve bigger problems.

Note: The command line goes by lots of names: command line, command line interface (CLI),
terminal, shell, console, and more. For the sake of brevity, I’ll be referring to it as the terminal
from now on.

www.hackingwithswift.com 3

A brief tour of the terminal
Launch your terminal app now, and you’ll probably be presented with a black screen, and
some white text like this:

Last login: Mon May 23 13:39:31 on console
virgil:~ twostraws$

The first line just says when we last launched the terminal, but the second line is more
important: this is the command prompt. The command prompt appears whenever the system is
waiting for you to enter a command, and contains some useful bits of information:

• virgil is the name of my computer – I’m a classics junkie. When you start running
commands on other systems, having this reminder is important.

• ~ is the terminal way of saying “your home directory”. More on that in a moment.
• twostraws my username.
• $ divides the prompt from your own typing. Everything after this dollar sign is your text.

Command prompts are often written in different ways, for example you might see this:

twostraws@virgil:~$

That contains all the same information, just in a different order.

Your home directory is your personal space on your computer, and allows your files to be
stored separately from other users’. On Macs, for example, programs live in /Applications,
configuration data live in /Library, and user data lives in /Users, for example /Users/twostraws.
Inside your home directory will be your desktop (e.g. /Users/twostraws/Desktop), your
documents folder (/Users/twostraws/Documents), and so on.

Because the home directory is so commonly used, it gets an alias in the form of ~ so rather
than writing /Users/twostraws/Desktop I can just write ~/Desktop to mean the same thing.

Let’s run the first command now: type ls then hit return. Unix commands are written for

www.hackingwithswift.com4

A brief tour of the terminal

brevity, so ls is short for list – it lists files. By default, ls lists the files in the current directory,
but you can also list files in other directories. For example, try ls Desktop to list the files on
your desktop. We’re currently in the home directory, so ls Desktop will refer to the directory
named Desktop inside the home directory.

You can move between directories by using the cd command, which is short for “change
directory”. For example, cd Desktop will change to the desktop. So, rather than writing ls
Desktop to print the contents of the desktop, we could write this:

cd Desktop
ls

That changes to the Desktop directory, then uses ls by itself to print the contents of the current
directory. When you change directory, your command prompt will change because you’re no
longer in ~ – your home directory – and instead you’re now in the Desktop folder. Your
command prompt will now look like one of these:

virgil:Desktop twostraws$
twostraws@virgil ~/Desktop$

The former shows you only the name of the current directory, whereas the latter shows you the
full path: ~/Desktop. If your command prompt doesn’t show the full path, you can use the
pwd command (“print working directory”) to see the path.

You can move from ~/Desktop back up to ~ (your home directory) by using the cd command
again, but this time I want to demonstrate a few different options.

 1. No matter where you are, you can always move to the parent directory – i.e., the directory
one level above where you are right now – by writing cd .. – that’s two periods.

 2. You know that ~ means “home directory”, so when you want to go back to the home
directory you can just type cd ~.

 3. cd automatically keeps track of your previous directory. If you want to return to it, use cd -
– that’s a dash.

www.hackingwithswift.com 5

The Unix terminal

 4. Moving to your home directory is in fact so common that just typing cd by itself with no
directory name goes back to your home directory.

The special .. usage is called a pseudo-directory – it looks like a directory name, but it isn’t one
really, and instead is understood to mean “the parent directory.” There’s one other pseudo-
directory, ., which means “the current directory.” This is important for security reasons: if you
downloaded a program called “ls”, the system wouldn’t run it when you typed “ls” – it would
run the system ls command. If you really wanted to run the one you downloaded, you need to
use the . pseudo-directory, like this: ./ls. Without this precaution, you could accidentally run
malware that happened to have the same name as a system command.

You might have noticed that . and .. don’t appear when you run ls. This is because any files
that start with “.” are considered to be hidden – you need to instruct ls to show hidden files in
order to show . and .. and I’ll talk more on that later.

Pro tip: If you want to impress your Unix friends, try out the pushd and popd commands. Use
pushd like you use cd, e.g. pushd Desktop. It changes into that directory, but also remembers
all the previous directories you have used. You can then unwind the directory stack by running
popd by itself, which returns you to the previous directory you were in. Use popd again and
again to return to successive previous directories.

Easier navigation
You can now list files and move between directories, so you have enough information to start
learning more advanced commands. Before we do that, though, I want to explain a few useful
tips that will make your terminal life easier.

First, you need to get friendly with your Tab key. It’s usually on the left edge of the keyboard
next to Q, and in the terminal it means “complete what I’m typing.” So, rather than typing cd
Desktop you can in fact type cd De then press Tab to have the terminal write the rest of the
word for you. If there are multiple possible matches, the terminal will complete as much as it
can.

www.hackingwithswift.com6

A brief tour of the terminal

Second, if you want to re-run a command you typed previously, you can use the up and down
cursor keys to browse through previous commands. When you find one you want, just hit
return to run it again. If you have run lots of commands, you can search instead: press Ctrl+r
(hold down Ctrl then press the “r” key), to enter search mode, then start typing to match
previous commands. Again, when you find the one you want, just hit return to run it.

Third, although the manual pages for terminal commands are often long and even incoherent,
there is one shorter command that is useful: whatis tells you the purpose of a single command,
effectively summarizing the manual page in one line of text. For example, there’s a command
called “mkdir” that makes directories, but if you weren’t sure what it did you could run whatis
mkdir and the system would report “whatis(1) – make directories.” (If you were wondering,
mkdir somedir makes a new directory named “somedir”.)

Fourth, if you want to execute a long-running command but don’t want to wait for it to finish,
you can add an ampersand to the end of the command to make it run in the background. The
command will appear to finish immediately and you’ll be able to type in new commands, but
in reality it’s still running in the background.

Finally, commands that affect parts of the system outside of your user account require
administrator access. For example, if you try to create a directory outside of your home
directory, the command will fail because you don’t have permission. If you are a system
administrator – which, if it’s your own computer, you almost certainly are – you can run the
command using “super user” privileges, which will ask for your password and run the
command as an administrator. To do this, first ensure the command is safe: if you move or
delete critical files, your system will break. Once you’re sure it’s safe, type the same command
again, but prefix it with sudo, which is short for “super user do”. For example:

sudo ls

That will print the contents of the current directory, but will do it as an administrator. The
result will be identical, but it’s a safe way to test out running commands as an administrator.

That wraps up our gentle tour around the terminal. From here on I want to demonstrate

www.hackingwithswift.com 7

The Unix terminal

individual commands in more depth so you can learn more about the power of Unix.

www.hackingwithswift.com8

Reading file contents
Let’s start by looking at some basic commands to work with the contents of files, starting with
cat, which concatenates files. In practice this means it prints out the contents of one or more
files, so to test this out I’d like you to create two files on your desktop, using whatever text
editor you like:

 1. filea.txt: Give this the text “He thrusts his fists against the posts”
 2. fileb.txt: Give this the text “and still insists he sees the ghosts.”

Important: after each line of text, I would like you to press return to create a blank second
line. Now try running this command:

cat filea.txt

You should see the “He thrusts his fists” message, because cat has loaded the file and printed
its contents. If you’re curious why the blank line was needed in each file, try removing it from
filea.txt then re-running the cat command – you’ll see this:

He thrusts his fists against the postsvirgil:Desktop twostraws$

Without the line break, the command prompt starts on the same line as the file’s contents,
which make for hard reading – so please put the line break back.

We can print two at a time, like this:

cat filea.txt fileb.txt

The contents of each file just gets sent to output, one after the other. This is helpful because the
terminal allows you to redirect your output so that it’s written to a file instead of printed for the
user to read. To do this, use > followed by a filename. For example, this command creates
filec.txt by merging the contents of filea.txt and fileb.txt:

cat filea.txt fileb.txt > filec.txt

www.hackingwithswift.com 9

The Unix terminal

If you run that command again and again, it will silently recreate filec.txt by merging filea.txt
and fileb.txt. An alternative is to redirect using >> which appends rather than overwrites the
file, like this:

cat filea.txt fileb.txt >> filec.txt

If you run delete the existing filec.txt then run that command three times, filec.txt will have
this content:

He thrusts his fists against the posts
and still insists he sees the ghosts.
He thrusts his fists against the posts
and still insists he sees the ghosts.
He thrusts his fists against the posts
and still insists he sees the ghosts.

The cat command has two options that are frequently useful: -s removes blank lines, and -n
numbers the output. The line numbers are counted individually for each file, so printing two
one-line files will give them both the line number 1.

In our case, we have a six-line file, filec.txt, that was created by concatenating filea.txt and
fileb.txt, so try running this command:

cat -n filec.txt

You should see output like the below:

1 He thrusts his fists against the posts
2 and still insists he sees the ghosts.
3 He thrusts his fists against the posts
4 and still insists he sees the ghosts.
5 He thrusts his fists against the posts
6 and still insists he sees the ghosts.

www.hackingwithswift.com10

Reading file contents

Warning: Redirecting a file back to itself is a bad idea unless you’re very careful. For
example, if you ran cat filea.txt > filea.txt you would end up with a completely blank file.
This is because your terminal prepares the redirect before anything else happens, which means
the first thing it does is clear filea.txt. So, by the time the cat filea.txt part executes, the file is
already empty.

Paging through output
In order to demonstrate what it’s like working with more text, I’d like you to go to Wikipedia,
select a random article, then paste it into filec.txt using a text editor. Any article will do, as
long as it has lots of text.

If you want to the contents of filec.txt, you could use cat like this:

cat filec.txt

However, the file ought to be quite long, so you’ll see it scroll off your screen quickly. Thanks
to modern user interfaces, your terminal probably has a scroll bar so you can move back and
forth over the output, but in Ye Olden Days once something had scrolled off the screen it was
gone for good.

This is where less comes in: it reads a file in, but allows you to scroll up and down to read its
full content more comfortably. This is helpful even with graphical scrollbars, because it means
your fingers can stay on the keyboard rather than moving to and from your mouse or trackpad.

Using less is just like using cat:

less filec.txt

Once it’s running, use the up and down cursor keys to scroll around, or press “q” to exit.

Simple, right? Well, it turns out that less is actually extraordinary powerful: it has options for
every letter of the alphabet, which means pressing keys from “a” to “z” all do different things,

www.hackingwithswift.com 11

The Unix terminal

and in fact many letters even do different things depending on whether they are used in
uppercase or lowercase.

Don’t worry, I’m not going to explain all 52 options, but I do want to explain a handful of the
most interesting ones. They can be split into two categories: parameters you pass to less when
you run it, and commands you run when less is running.

Let’s start with parameters you pass before you run less, because there are only three worth
learning. First, use -N (not -n!) to enable line numbering inside less, for example:

less -N filec.txt

Now, look at the bottom of your less output. Although some systems are smart enough to avoid
this, the vast majority of people will see a single colon at the bottom of the screen as they
scroll around, which is like the command prompt for less. This isn’t helpful, but you can pass
the -M (not -m!) parameter to less to make that change:

less -M filec.txt

Now you will also see the filename you’re viewing, the range of lines currently visible, the
total number of lines in the file, and a percentage of how far you are through it.

You can use the two parameters together either by specifying them individually or together.
So, both of these are identical:

less -N -M filec.txt
less -NM filec.txt

The last pre-run less parameter you should know is +, which lets you send commands that less
should run after it starts. To explain how that works, we need to start learning about the post-
run commands – i.e. commands that work while less is running – so let’s start with an easy
one: press / to start searching for text. So, launch less, then try /the to look for the first instance
of the word “the” in your file. You can repeat the search by pressing “/“ then return.

www.hackingwithswift.com12

Reading file contents

So, + lets you specify post-run commands to run on the command prompt. For example, you
might want to open a file and go to the first mention of “the”, in which case you would run less
like this:

less +/the filec.txt

This is useful when you’re more experienced, because you can create your own commands by
saving ones you like.

You’ve seen that pressing / enters search mode, and pressing / then return repeats your
previous search. Well, if you want to do a backwards search (i.e., upwards from your current
position), you need to use ? instead. On most keyboards that’s activated by pressing Shift+/, so
you can see the link: / triggers search, and Shift+/ triggers reverse search.

The less command has a few different ways of jumping to a particular point in a file. For
example, you can type a number then “g” to go to a particular line, e.g. “50g” will jump to line
50. You can also use “p” to specify a percent, so “50p” will jump to the half-way point in the
file.

If you intend to work with the same file for a little while, a more powerful way of navigating is
by using markers. These are invisible bookmarks placed inside a file by less so you can jump
around faster, but they don’t get saved so they won’t affect the file. To place a marker, press
“m” then one of the 52 letters from A-Z and a-z (it’s case sensitive!). To jump back to a
marker, type ' (an apostrophe) then the letter you used to place your marker. For example, ma
places a marker called “a” at the current position, and 'a jumps back to that marker.

There are two more useful ways to use less before we’re done. First you can have it read
multiple files at the same time just by listing more on the command prompt. For example:

less -M filea.txt fileb.txt filec.txt

You’ll notice I added the -M parameter to have the less prompt add extra information. That’s
not required to open multiple files, but it makes life easier. When you have several files open,
press :n to go to the next file or :p to go to the previous one. You can add more open files by

www.hackingwithswift.com 13

The Unix terminal

using :e somefile.txt, and you’ll be pleased to know that tab completion works here too. Once
you’re finished with a file, you can remove it from the list of open files with :d.

You can also search across files – i.e., search for a word in any of the files you have open – by
using /*, for example, /*the will search for text in any open file. Annoyingly, repeating a
cross-file search uses silly keystrokes: you need to press Escape then either “n” (for searching
forwards) or “N” (for backwards).

Finally, one last thing: you can launch a terminal from inside less by typing ! then pressing
return. You can go ahead and run as many commands as you want, then press Ctrl+D to exit. If
you want to run one specific command, e.g. ls, use this: !ls. That will run the command and
return immediately. If you want to refer to the file you’re currently viewing in less, use % –
that will automatically be replaced with the filename.

Right, enough about less. Honestly, you’ll probably remember only half the things above, and
that’s OK – everyone uses it in different ways. However, I hope you can appreciate how even a
lowly command like less is actually packed with functionality – and we’ve covered less than a
tenth of it!

Printing parts of files: head and tail
You’ve seen how cat prints a whole file, and less prints a whole file but gives you the ability to
scroll around and search. Now let’s look at head and tail, which are commands that print only
the start or end of a file respectively.

By default, both commands print the first or last ten lines of a file. For example, this will print
the first ten lines of our file:

head filec.txt

If you want to read more or fewer lines, use the -n parameter followed by a number. For
example, this will print the final five lines of our file:

tail -n 5 filec.txt

www.hackingwithswift.com14

Reading file contents

Where tail becomes really useful is when you use its -f parameter, because that enables
“follow” mode: the program continues to run until you press Ctrl+D, and any new additions to
the file automatically get printed out. If you specify two or more filenames for follow mode,
tail will watch them both and tell you when either of them changes.

Counting lines and words
If you want to count the number of lines, words, and characters a file, you should use the wc
command, like this:

wc filec.txt

You’ll see output like this:

26 182 1001 filec.txt

The first column shows the number of lines, the second the number of words, and the third the
number of characters. The filename is printed at the end because you can count multiple things
– and when you do, you’ll automatically get a total line for each of the columns.

If you want to count only lines, only words, or only characters, use either -l, -w, or -c. For
example, this counts the words in the file:

wc -w filec.txt

www.hackingwithswift.com 15

Listing files intelligently
You’ve already seen the ls command, but in order to be a productive terminal user you need to
learn two new things: wildcards for filenames, and ls parameters.

Let’s start with wildcards, because you might already know these from using them elsewhere.
There are two that matter: * means “any characters”, and ? means “any single character.” You
can use this to work on a group of files at the same time.

You’ve already seen that ls lists all the files in the current directory. But if you wanted to show
only files that start with “D” (Desktop, Documents, etc), you would use this:

ls D*

You can place that * anywhere in your filename, and have it filter appropriately. Some more
examples:

ls *.md
ls *.txt *.xml
ls f*e*

The first will list only Markdown files, the second only files that end with .txt or .xml, and the
third files that begin with the text “f” then any letters, then “e” then any more letters – i.e.,
“filea.txt” will match.

If you find you need to specify lots of alternatives regularly, you can also use brace expansion
like this:

ls *.{txt,xml,md}

That gets converted into this:

ls *.txt *.xml *.md

www.hackingwithswift.com16

Listing files intelligently

The other wildcard you can use is ?, which matches any single character. For example, we
have three files called filea.txt, fileb.txt and filec.txt, so we could list them all like this:

ls file?.txt

That expects exactly one character after “file” and before “.txt”, so “file123.txt” won’t match.

So far, so meh. But these wildcards become much more valuable when you realize they are a
feature of the terminal, not of ls. This means you can use them with cat, wc, head, and any
other commands. For example, because we have three files called filea.txt, fileb.txt, and
filec.txt, these commands do the same thing:

cat filea.txt fileb.txt filec.txt
cat file?.txt
cat file*.txt
cat file*

Options for listing
The ls command has lots of options to modify the way file lists are shown, but I want to pick
out only a few of the most interesting ones.

You already learned that filenames starting with a period are considered to be hidden files. If
you want to show those hidden files, use ls with the -a parameter, like this:

ls -a

Two parameters you’ll often see used together are -l and -h: the former means “show a long
listing” so that you see file size, permissions, ownership, and last modified date; the latter
means “show file sizes in a way humans can understand.”

Here’s what the output from ls -l looks like by itself:

-rw-r--r--@ 1 twostraws staff 39 23 May 18:43 filea.txt

www.hackingwithswift.com 17

The Unix terminal

-rw-r--r--@ 1 twostraws staff 38 23 May 18:37 fileb.txt
-rw-r--r-- 1 twostraws staff 1001 24 May 22:59 filec.txt

That contains seven different columns of information, of which you’re likely to care about
only a few. For your curiosity, here’s what they all mean:

• -rw-r--r--@ are the permissions for this file.
• 1 means the number of hard links pointing to this file.
• twostraws is the user owner of the file.
• staff is the group owner of the file.
• 39 is the size of the file.
• 23 May 18:43 is the last modified time of the file.
• filec.txt is the file name being listed.

A couple of those deserve more detail.

Permissions in Unix are described as three sets of values: what can I do with a file, what can
people like me (my group) do with a file, and what can everyone else do with a file? Groups
matter a lot when you’re working on a big system, e.g. where you might have a “student”
group and a “teacher” group, but don’t matter at all when you’re working on a home computer.

Let’s break down one of the permission lines: -rw-r--r--@. The first - means it’s a file rather
than a directory (directories have d there), rw- means I can read and write the file but not
execute it, r-- means people in my user group can read it but not write or execute it, the second
r-- means people outside my user group can read it but not write or execute it, and @ means it
has macOS extended attributes. macOS lets programs save attributes about files separately
from the file itself, so a text editor might save the position you were at last time you opened a
file, or Finder might attach labels.

The number of hard links to a file is also a curious thing. Unix systems allow multiple
filenames to point to the same file on disk. So, /Users/twostraws/hello.txt and /etc/hello.txt
might be exactly the same file – one isn’t an alias for another, they are both real files
independently, so if you delete one the other doesn’t break. At the same time, they are pointing

www.hackingwithswift.com18

Listing files intelligently

to the same file, which means if you edit one, the other changes. For directories, the number of
hard links will be 2 plus the number of links inside it.

Now let’s look at file sizes. My filec.txt has the size 1001, which means it uses 1001 bytes on
disk. That’s pretty easy to understand if you’re looking at small files, but when you see a size
like 24721979 you need to read it carefully to understand that it means a 24MB file. This is
where the -h parameter comes in, for example:

ls -lh

-rw-r--r--@ 1 twostraws staff 39B 23 May 18:43 filea.txt
-rw-r--r--@ 1 twostraws staff 38B 23 May 18:37 fileb.txt
-rw-r--r--@ 1 twostraws staff 1.0K 24 May 22:59 filec.txt

As you can see, using -h tells ls to use letters like B (bytes) and K (kilobytes) to describe file
sizes, which makes for easier reading. You will also see M for megabytes and G for gigabytes.

When you use ls with a directory, it will print the contents of that directory automatically. If
you want it to work recursively – print the contents of the directory, print the contents of all
subdirectories, print the contents of all sub-subdirectories, and so on – use the -R parameter.

The most useful options to ls are those that sort the output. By default it’s sorted alphabetically
by name, but there are two other useful options: -S (capital S) sorts files by size with the
largest shown first, and -t (lowercase T) sorts files by when they were last modified with the
newest shown first.

You can reverse the sorting by using the -r parameter. For example, this first command sorts
output largest first, and the second sorts output smallest first, both with long listing so you can
see the sorting has worked:

ls -lS
ls -lrS

www.hackingwithswift.com 19

Piping one command into another
To help you understand the basics of Unix, I’ve made a major simplification so far, and I’m
going to remove that simplification now. In doing so, you will immediately be able to use the
handful of commands you have learned so far in many more ways, so I hope you’ll agree it
was worth it!

Previously I said “let’s look at head and tail, which are commands that print only the start or
end of a file respectively.” And that’s true. But what I didn’t say is that the definition of “file”
in Unix is broad, and in fact you’ll often hear long-term Unix users say that everything is a file.
This means things like network sockets are considered files, devices are considered files, the
input and output on your screen is a file, and more. Strictly speaking they are called “file
descriptors”, but the reality is the same: whenever we have been working with file so far, we
could be working with almost anything else.

You have already seen how > and >> can write to and append to files. There’s another way of
redirecting output, and it’s the pipe symbol, |. This might be accessed by pressing Shift+\ on
your keyboard. This takes the output from one program and redirects it to another.

Let’s using head as our example. This lists the first 10 lines of a file by default, but now we
know anything is a file – including the output from the terminal. This means we can use head
to display the first 10 lines of output. For example, try to read this command and figure out
what it might do:

ls -lS | head

Let’s break it down:

• ls: list files
• -l: with long listing format
• S: sorted largest first
• |: send output to...
• head: show first 10 items

www.hackingwithswift.com20

Piping one command into another

Combined, that command will show the 10 largest files in the current directory. And how
many files are in the current directory? Try this:

ls | wc -l

Let’s break that down:

• ls: list files
• |: send output to...
• wc: count words
• -l: report only number of lines

Combined, that command will count the number of lines returned by ls, which is the number of
files in the current directory.

You can pipe together as many commands as you need, and even though I’ve only taught you a
few commands you can already use them in interesting ways. For example, try figuring out
this:

ls -S | head -n 50 | less -N

You’ve seen the first part already: list files sorted largest first, then use head to use only part
of the output. This time I specified -n 50 to get the 50 largest files, but that’s quite hard to read
in the terminal so I piped it again. This time it’s to less, and I used the -N parameter to number
the lines of output.

Now that you know how to pipe one command into another, I’ll be using it in future chapters.

Author’s note: It’s at this point where some people can feel a bit lost with the command line –
they forget what less -N does, or why ls -r is different from ls -R. Don’t worry: I forget this
sort of thing all the time, and so will you. The truth is that you only need to remember the
options you use regularly; it’s important to know that the more obscure options exist but if
(when!) you forget them, you can just look them up here or in another reference.

www.hackingwithswift.com 21

The Unix terminal
(when!) you forget them, you can just look them up here or in another reference.

www.hackingwithswift.com22

Finding files based on search
criteria
Now you’ve seen how many options ls and less have, it should come as no surprise to you that
the command for finding files is a real Swiss army knife of functionality. Again, I’m going to
filter down the many options to the handful you’ll find most important.

To find files that match search criteria, you use the find command. This takes three parameters
in its most common usage:

find somewhere -iname somefile.txt

The first parameter, somewhere, is where file should look for matches. You can specify . to
mean the current directory if you want. Either way, find always operates recursively, so it will
search the directory you specify, as well as all its children, grandchildren, and so on.

The second parameter, -iname, means “look for a file named...” and should be followed by the
name to look for. The “i” in “iname” means “case-insensitive”, which means it will find
somefile.txt, Somefile.txt, SOMEFILE.txt, and so on. If you want case-sensitive searching for
some reason you can use -name instead.

The third parameter, somefile.txt, is actually attached to the second parameter, because that’s
the name of the file we want find to look for. The find command can be used to search for
things other than a file’s name, so you normally specify things in pairs: “look for a name:
somename” or “look for a size: somesize”.

Important: You can use wildcards with find, but you need to be careful. I already said that
wildcards are a feature of the shell, not of the commands you run, which means these two
commands do different things:

find . -iname *.txt
find . -iname "*.txt"

www.hackingwithswift.com 23

The Unix terminal

In the first command, wildcard expansion is performed by your terminal. In the second,
wildcard expansion is performed by find. We had the files filea.txt, fileb.txt, and filec.txt
earlier, and when you run the first command they would be matched by the terminal. This
means the first command is effectively this:

find . -iname filea.txt fileb.txt filec.txt

That means “find any files with the name filea.txt, fileb.txt, or filec.txt, in the current directory
or any subdirectory.” That might be what you want, but chance are you mean “find any file
that ends in .txt” instead – in which case the second command is the one you want.

You can search using other criteria, with a popular alternative being size. To do this, specify
another pair of parameters: -size followed by a size option. This can be specified in a variety of
ways, so here are some examples:

find . -size 10k
find . -size +10k
find . -size -10k
find . -size +1G

The first line looks for files that are exactly 10 kilobytes, the second for files that are greater
than 10 kilobytes, the third for files smaller than 10 kilobytes, and the fourth for files that are
greater than 1 gigabyte. Note that “k” is small, but “G” (and “M” for megabytes) are both
capital – don’t worry, find will tell you if you screw that up.

You can combine criteria together, but make sure you specify them in pairs. For example, this
is correct:

find . -name "*.zip" -size +1G

Whereas this will not work:

find . -name -size "*.dmg" +1G

www.hackingwithswift.com24

