
Paul Hudson

CODING CHALLENGES
SWIFT

CODING CHALLENGES
SWIFT

HACKING WITH SWIFT

REAL PROBLEMS, REAL SOLUTIONS

Prepare for iOS interviews,
test yourself against friends,
and level up your skills.

FREE SAMPLE

Chapter 1
Strings

www.hackingwithswift.com2

Challenge 1: Are the letters
unique?
Difficulty: Easy

Write a function that accepts a String as its only parameter, and returns true if the string has
only unique letters, taking letter case into account.

Sample input and output
• The string “No duplicates” should return true.
• The string “abcdefghijklmnopqrstuvwxyz” should return true.
• The string “AaBbCc” should return true because the challenge is case-sensitive.
• The string “Hello, world” should return false because of the double Ls and double Os.

For this initial challenge I’ll write some test cases for you, so that you have something to use in
the future. These four assert() statements should all evaluate to true, and therefore not trigger
an error:

assert(challenge1(input: "No duplicates") == true, "Challenge 1
failed")
assert(challenge1(input: "abcdefghijklmnopqrstuvwxyz") == true,
"Challenge 1 failed")
assert(challenge1(input: "AaBbCc") == true, "Challenge 1
failed")
assert(challenge1(input: "Hello, world") == false, "Challenge 1
failed")

Hints
Remember, read as few hints as you can to help you solve the challenge, and only read them if

www.hackingwithswift.com 3

Strings

you’ve tried and failed. (This reminder won’t be repeated again.)

Hint #1: You should treat the input string like an array that contains Character elements.

Hint #2: You could use a temporary array to store characters that have been checked, but it’s
not necessary.

Hint #3: Sets are like arrays, except they can’t contain duplicate elements.

Hint #4: You can create sets from arrays and arrays from sets. Both have a count property.

Solution
There are two ways to solve this, both of which are perfectly fine given our test cases. First,
the brute force approach: create an array of checked characters, then loop through every letter
in the input string and append the latter to the list of checked characters, returning false as soon
as a call to contains() fails.

Here’s how that code would look:

func challenge1a(input: String) -> Bool {
 var usedLetters = [Character]()

 for letter in input {
 if usedLetters.contains(letter) {
 return false
 }

 usedLetters.append(letter)
 }

 return true
}

www.hackingwithswift.com4

Challenge 1: Are the letters unique?

That solution is correct with the example input and output I provided, but you should be
prepared to discuss that it doesn’t scale well: calling contains() on an array is an O(n)
operation, which means it gets slower as more items are added to the array. If our text were in
a language with very few duplicate characters, such as Chinese, this might cause performance
issues.

The smart solution is to use Set, which can be created directly from the input string. Sets
cannot contain duplicate items, so if we create a set from the input string then the count of the
set will equal the count of the input if there are no duplicates.

In code you would write this:

func challenge1b(input: String) -> Bool {
 return Set(input).count == input.count
}

www.hackingwithswift.com 5

Challenge 2: Is a string a
palindrome?
Difficulty: Easy

Write a function that accepts a String as its only parameter, and returns true if the string reads
the same when reversed, ignoring case.

Sample input and output
• The string “rotator” should return true.
• The string “Rats live on no evil star” should return true.
• The string “Never odd or even” should return false; even though the letters are the same in
reverse the spaces are in different places.

• The string “Hello, world” should return false because it reads “dlrow ,olleH” backwards.

Hints
Hint #1: You can reverse strings using their reversed() method.

Hint #2: Two strings compare as equal if they contain the same letters in the same order. They
are value types in Swift, so it doesn’t matter how they were created, as long as their values are
the same.

Hint #3: You need to ignore case, so consider forcing the string to either lowercase or
uppercase before comparing.

Solution
This is one of the most common interview questions you’ll come across, and but fortunately

www.hackingwithswift.com6

Challenge 2: Is a string a palindrome?

it’s nice and easy to solve thanks to the reversed() method.

One small wrinkle is that reversed() doesn’t actually return a string for performance reasons,
so you need to convert it to a string in order to perform the check, like this:

func challenge2a(input: String) -> Bool {
 return String(input.reversed()) == input
}

Remember, strings are value types in Swift, which means they compare as equal as long as
their contents are identical - it doesn’t matter how they are created.

As an analogy, we all know that 2 times 2 is equal to 2 + 2, even though the number 4 was
created using different methods. The same is true of Swift’s string: even though one is
reversed, the == operator just compares the current value.

Finally, make sure you remember that your comparison should ignore string case. This can be
done with the lowercased() method on the input string, like this:

func challenge2b(input: String) -> Bool {
 let lowercased = input.lowercased()
 return String(lowercased.reversed()) == lowercased
}

Done!

www.hackingwithswift.com 7

Challenge 3: Do two strings
contain the same characters?
Difficulty: Easy

Write a function that accepts two String parameters, and returns true if they contain the same
characters in any order taking into account letter case.

Sample input and output
• The strings “abca” and “abca” should return true.
• The strings “abc” and “cba” should return true.
• The strings “ a1 b2 ” and “ b1 a2 ” should return true.
• The strings “abc” and “abca” should return false.
• The strings “abc” and “Abc” should return false.
• The strings “abc” and “cbAa” should return false.
• The strings “abcc” and “abca” should return false.

Hints
Hint #1: This task requires you to handle duplicate characters.

Hint #2: The naive way to check this is to loop over the characters in one and check it exists in
the other, removing matches as you go.

Hint #3: An easier solution is to treat both strings as character arrays.

Hint #4: If you sort two character arrays, then you will have something that is the same length
and identical character for character.

www.hackingwithswift.com8

Challenge 3: Do two strings contain the same characters?

Solution
You could write a naïve solution to this problem by taking a variable copy of the second input
string, then looping over the first string and checking each letter exists in the second. If it does,
remove it so it won’t be counted again; if not, return false. If you get to the end of the first
string, then return true if the second string copy is now empty, otherwise return false.

For example:

func challenge3a(string1: String, string2: String) -> Bool {
 var checkString = string2

 for letter in string1 {
 if let index = checkString.index(of: letter) {
 checkString.remove(at: index)
 } else {
 return false
 }
 }

 return checkString.count == 0
}

That solution works, but is less than ideal because you’re having to look up letter positions
repeatedly using index(of:), which is O(n). Worse, the remove(at:) call is also O(n), because it
needs to move other elements down in the array once the item is removed.

A simpler solution is to remember that strings are sequences in Swift and sort them directly.
Once that’s done, you can do a direct comparison using ==. This ends up involving much less
code:

func challenge3b(string1: String, string2: String) -> Bool {
 return string1.sorted() == string2.sorted()
}

www.hackingwithswift.com 9

Strings

www.hackingwithswift.com10

Challenge 4: Does one string
contain another?
Difficulty: Easy

Write your own version of the contains() method on String that ignores letter case, and
without using the existing contains() method.

Sample input and output
• The code "Hello, world".fuzzyContains("Hello") should return true.
• The code "Hello, world".fuzzyContains("WORLD") should return true.
• The code "Hello, world".fuzzyContains("Goodbye") should return false.

Hints
Hint #1: You should write this as an extension to String.

Hint #2: You can’t use contains(), but there are other methods that do similar things.

Hint #3: Try the range(of:) method.

Hint #4: To ignore case, you can either uppercase both strings, or try the second parameter to
range(of:).

Solution
If you were already familiar with the range(of:) method, this one should have proved
straightforward. If not, you were probably wondering why I gave it an easy grade!

The range(of:) method returns the position of one string inside another. As it’s possible the

www.hackingwithswift.com 11

Strings

substring might not exist in the other, the return value is optional. This is perfect for us: if we
call range(of:) and get back nil, it means the substring isn’t contained inside the check string.

Ignoring letter case adds a little complexity, but can be solved either by collapsing the case
before you do your check, or by using the .caseInsensitive option for range(of:).

The former looks like this:

extension String {
 func fuzzyContains(_ string: String) -> Bool {
 return self.uppercased().range(of: string.uppercased()) !
= nil
 }
}

And the latter like this:

extension String {
 func fuzzyContains(_ string: String) -> Bool {
 return range(of: string, options: .caseInsensitive) !=
nil
 }
}

In this instance the two are identical, but there’s a benefit to collapsing the case if you had to
check through lots of items.

www.hackingwithswift.com12

Challenge 5: Count the characters
Difficulty: Easy

Write a function that accepts a string, and returns how many times a specific character appears,
taking case into account.

Tip: If you can solve this without using a for-in loop, you can consider it a Tricky challenge.

Sample input and output
• The letter “a” appears twice in “The rain in Spain”.
• The letter “i” appears four times in “Mississippi”.
• The letter “i” appears three times in “Hacking with Swift”.

Hints
Hint #1: Remember that String and Character are different data types.

Hint #2: Don’t be afraid to go down the brute force route: looping over characters using a for-
in loop.

Hint #3: You could solve this functionally using reduce(), but tread carefully.

Hint #4: You could solve this using NSCountedSet, but I’d be suspicious unless you could
justify the extra overhead.

Solution
You might be surprised to hear me saying this, but: this is a great interview question. It’s
simple to explain, it’s simple to code, and it has enough possible solutions that it’s likely to
generate some interesting discussion – which is gold dust in interviews.

www.hackingwithswift.com 13

Stringsgenerate some interesting discussion – which is gold dust in interviews.

This question is also interesting, because it’s another good example where the simple brute
force approach is both among the most readable and most efficient. I suggested two
alternatives in the hints, and I think it’s an interesting code challenge for you to try all three.

First, the easy solution: loop over the characters by hand, comparing against the check
character. In code, it would be this:

func challenge5a(input: String, count: Character) -> Int {
 var letterCount = 0

 for letter in input {
 if letter == count {
 letterCount += 1
 }
 }

 return letterCount
}

There’s nothing complicated there, but do make sure you accept the check character as a
Character to make the equality operation smooth.

The second option is to solve this problem functionally using reduce(). This has the advantage
of making for very clear, expressive, and concise code, particularly when combined with the
ternary operator:

func challenge5b(input: String, count: Character) -> Int {
 return input.reduce(0) {
 $1 == count ? $0 + 1 : $0
 }
}

So, that will start with 0, then go over every character in the string. If a given letter matches the

www.hackingwithswift.com14

Challenge 5: Count the characters

input character, then it will add 1 to the reduce counter, otherwise it will return the current
reduce counter. Functional programming does make for shorter code, and the intent here is
nice and clear, however this is not quite as performant – it’s likely to run about 10% slower
than the first solution depending on your configuration.

A third solution is to use NSCountedSet, but that’s wasteful unless you intend to count several
characters. It’s also complicated because Swift bridges String to NSObject well, but doesn’t
bring Character, so NSCountedSet won’t play nicely unless you convert the characters
yourself. So, your code would end up being something like this:

func challenge5c(input: String, count: String) -> Int {
 let array = input.map { String($0) }
 let counted = NSCountedSet(array: array)

 return counted.count(for: count)
}

That creates an array of strings by converting each character in the input string, then creates a
counted set from the string array, and finally returns the count – for a single letter. Wasteful,
for sure, and inefficient too – a massive ten times slower than the original.

There’s actually a fourth option you might have chosen. It’s the shortest option, however it
requires a little lateral thinking: you can calculate how many times a letter appears in a string
by removing it, then comparing the lengths of the original and modified strings. Here it is in
Swift:

func challenge5d(input: String, count: String) -> Int {
 let modified = input.replacingOccurrences(of: count, with:
"")
 return input.count - modified.count
}

www.hackingwithswift.com 15

Challenge 6: Remove duplicate
letters from a string
Difficulty: Easy

Write a function that accepts a string as its input, and returns the same string just with
duplicate letters removed.

Tip: If you can solve this challenge without a for-in loop, you can consider it “tricky” rather
than “easy”.

Sample input and output
• The string “wombat” should print “wombat”.
• The string “hello” should print “helo”.
• The string “Mississippi” should print “Misp”.

Hints
Hint #1: Sets are great at removing duplicates, but bad at retaining order.

Hint #2: Foundation does have a way of forcing sets to retain their order, but you need to
handle the typecasting.

Hint #3: You can create strings out of character arrays.

Hint #4: You can solve this functionally using filter().

Solution
There are three interesting ways this can be solved, and I’m going to present you with all three

www.hackingwithswift.com16

Challenge 6: Remove duplicate letters from a string

so you can see which suits you best. Remember: “fastest” isn’t always “best”, not least because
readability is important, but also particularly because “memorizability” is important too – the
perfect solution is often easily forgotten when you’re being tested.

Let’s look at a simple but interesting solution first: using sets. Swift’s standard library has a
built-in Set type, but it does not preserve the order of its elements. This is a shame, because
otherwise the solution would have been as simple as this:

let string = "wombat"
let set = Set(string)
print(String(set))

However, Foundation has a specialized set type called NSOrderedSet. This also removes
duplicates, but now ensures items stay in the order they were added. Sadly, it’s not bridged to
Swift in any pleasing way, which means to use it you must add typecasting: once from
Character to String before creating the set, then once from Array<Any> to Array<String>.

This function does just that:

func challenge6a(string: String) -> String {
 let array = string.map { String($0) }
 let set = NSOrderedSet(array: array)
 let letters = Array(set) as! Array<String>
 return letters.joined()
}

That passes all tests, but I think you’ll agree it’s a bit ugly. I suspect Swift might see a native
OrderedSet type in the future.

A second solution is to take a brute-force approach: create an array of used characters, then
loop through every letter in the string and check if it’s already in the used array. If it isn’t, add
it, then finally return a stringified form of the used array.

This is nice and easy to write, as long as you know that you can create a String directly from a

www.hackingwithswift.com 17

Strings

Character array:

func challenge6b(string: String) -> String {
 var used = [Character]()

 for letter in string {
 if !used.contains(letter) {
 used.append(letter)
 }
 }

 return String(used)
}

There is a third solution, and I think it’s guaranteed to generate some interesting discussion in
an interview or book group!

As you know, dictionaries hold a value attached to a key, and only one value can be attached to
a specific key at any time. You can change the value attached to a key just by assigning it
again, but you can also call the updateValue() method – it does the same thing, but also
returns either the original value or nil if there wasn’t one. So, if you call updateValue() and
get back nil it means “that wasn’t already in the dictionary, but it is now.”

We can use this method in combination with the filter() method on our input string’s
character property: filter the characters so that only those that return nil for updateValue()
are used in the return array.

So, the third solution to this challenge looks like this:

func challenge6c(string: String) -> String {
 var used = [Character: Bool]()

 let result = string.filter {
 used.updateValue(true, forKey: $0) == nil

www.hackingwithswift.com18

Challenge 6: Remove duplicate letters from a string

 }

 return String(result)
}

As long as you know about the updateValue() method, that code is brilliantly readable – the
use of filter() means it’s clear what the loop is trying to do. However, if you don’t know about
updateValue() then I suspect it falls short and is best avoided.

www.hackingwithswift.com 19

Challenge 7: Condense
whitespace
Difficulty: Easy

Write a function that returns a string with any consecutive spaces replaced with a single space.

Sample input and output
I’ve marked spaces using “[space]” below for visual purposes:

• The string “a[space][space][space]b[space][space][space]c” should return
“a[space]b[space]c”.

• The string “[space][space][space][space]a” should return “[space]a”.
• The string “abc” should return “abc”.

Hints
Hint #1: You might think it a good idea to use components(separatedBy:) then joined(), but
that will struggle with leading and trailing spaces.

Hint #2: You could loop over each character, keeping track of a seenSpace boolean that gets
set to true when the previous character was a space.

Hint #3: You could use regular expressions.

Hint #4: Try using replacingOccurrences(of:)

Solution
As is the case for many other string challenges, we can write a naïve solution or a clever one,

www.hackingwithswift.com20

Challenge 7: Condense whitespace

but here the clever one is dramatically simpler – and it uses regular expressions. (Yes, you did
just read “simpler” and “regular expressions” in the same sentence.)

But first, let’s look at something you might have tried:

func challenge7(input: String) -> String {
 let components =
input.components(separatedBy: .whitespacesAndNewlines)
 return components.filter { !$0.isEmpty }.joined(separator: "
")
}

That splits a string up by its spaces, then removes any empty items, and joins the remainder
using a space, and is the ideal solution – if your goal is to remove any duplicate whitespace
while also removing leading and trailing whitespace. However, it fails the requirement that
“[space][space][space][space]a” should return “[space]a“, so you should have rejected it.

Instead, you might have written a loop over the characters in the input string. If the current
letter was a space and you had already seen one in this run, continue to the next letter.
Otherwise, mark that you’ve seen a space. If it wasn’t a space, clear the space flag. Regardless
of whether it was the first space or a letter, append it to an output string.

Transform that into Swift and you get this:

func challenge7a(input: String) -> String {
 var seenSpace = false
 var returnValue = ""

 for letter in input {
 if letter == " " {
 if seenSpace { continue }
 seenSpace = true
 } else {
 seenSpace = false

www.hackingwithswift.com 21

Strings

 }

 returnValue.append(letter)
 }

 return returnValue
}

This is a clear solution, and it works great. However, for once, this is a place where regular
expressions can help: they turn all that into a single line of code:

func challenge7b(input: String) -> String {
 return input.replacingOccurrences(of: " +", with: " ",
options: .regularExpression, range: nil)
}

If you’re not familiar with regular expressions, “[space]+” means “match one or more spaces”,
so that will cause all multiple spaces to be replaced with a single space. Running regular
expressions isn’t cheap, so that code runs about 50% the speed of the manual solution, but you
would have to be doing a heck of a lot of work in order for it to be noticeable.

www.hackingwithswift.com22

Challenge 8: String is rotated
Difficulty: Tricky

Write a function that accepts two strings, and returns true if one string is rotation of the other,
taking letter case into account.

Tip: A string rotation is when you take a string, remove some letters from its end, then append
them to the front. For example, “swift” rotated by two characters would be “ftswi”.

Sample input and output
• The string “abcde” and “eabcd” should return true.
• The string “abcde” and “cdeab” should return true.
• The string “abcde” and “abced” should return false; this is not a string rotation.
• The string “abc” and “a” should return false; this is not a string rotation.

Hints
Hint #1: This is easier than you think.

Hint #2: A string is only considered a rotation if is identical to the original once you factor in
the letter movement. That is, “tswi” is not a rotation of “swift” because it is missing the F.

Hint #3: If you write a string twice, it must encapsulate all possible rotations, e.g. “catcat”
contains “cat”, “tca”, and “atc”.

Solution
This question appears in coding interviews far more than it deserves, because it’s a problem
that seems tricky the first time you face it but is staring-you-in-the-face obvious once someone
has told you the solution. I wonder how many times this question appears on interviews just so

www.hackingwithswift.com 23

Strings

the interviewer can feel smug about knowing the answer!

Anyway, let’s talk about the solution. As I said in hint #3, if you write a string twice it must
always encapsulate all possible rotations. So if your string was “abc” then you would double it
to “abcabc”, which contains all possible rotations: “abc”, “cab”, and “bca”.

So, an initial solution might look like this:

func challenge8(input: String, rotated: String) -> Bool {
 let combined = input + input
 return combined.contains(rotated)
}

However, that’s imperfect – the final example input and output was that “abc” should return
false when given the test string “a”. Using the code above, the input string would be double to
“abcabc”, which clearly contains the test string “a”. To fix this, we need to check not only that
the test string exists in the doubled input, but also that both strings are the same size.

So, the correct solution is this:

func challenge8(input: String, rotated: String) -> Bool {
 guard input.count == rotated.count else { return false }
 let combined = input + input
 return combined.contains(rotated)
}

Like I said, it’s easier than you think, but is it a test of coding knowledge? Not really. If
anything, you get a brief “aha!” flash when someone explains the solution to you, but apart
from scoring you some interview brownie points I doubt this would be useful in real life.

www.hackingwithswift.com24

