
Paul Hudson

PRO SWIFT

BOOK AND VIDEOS
Break out of beginner’s Swift 
with this hands-on guide

FREE SAMPLE



Chapter 1
Syntax

Wendy Lu (@wendyluwho), iOS engineer at Pinterest

Use final on properties and methods when you know that a declaration does not need to be 
overridden. This allows the compiler to replace these dynamically dispatched calls with direct 
calls. You can even mark an entire class as final by attaching the attribute to the class itself.

www.hackingwithswift.com2



Pattern matching
Switch/case is not a new concept: insert a value, then take one of several courses of action. 
Swift’s focus on safety adds to the mix a requirement that all possible cases be catered for –
 something you don’t get in C without specific warnings enabled – but that’s fairly trivial.

What makes Swift’s switch syntax interesting is its flexible, expressive pattern matching. 
What makes it doubly interesting is that since Swift’s launch most of this pattern matching has 
been extended elsewhere, so that same flexible, expressive syntax is available in if conditions 
and for loops.

Admittedly, if you jump in at the deep end you’re more likely to sink rather than swim, so I 
want to work up from basic examples. To refresh your memory, here’s a basic switch 
statement:

let name = "twostraws"

switch name {
case "bilbo":
   print("Hello, Bilbo Baggins!")
case "twostraws":
   print("Hello, Paul Hudson!")
default:
   print("Authentication failed")
}

It’s easy enough when you’re working with a simple string, but things get more complicated 
when working with two or more values. For example, if we wanted to validate a name as well 
as a password, we would evaluate them as a tuple:

let name = "twostraws"
let password = "fr0st1es"

www.hackingwithswift.com 3



Chapter 1: Syntax

switch (name, password) {
case ("bilbo", "bagg1n5"):
   print("Hello, Bilbo Baggins!")
case ("twostraws", "fr0st1es"):
   print("Hello, Paul Hudson!")
default:
   print("Who are you?")
}

You can combine the two values into a single tuple if you prefer, like this:

let authentication = (name: "twostraws", password: "fr0st1es")

switch authentication {
case ("bilbo", "bagg1n5"):
   print("Hello, Bilbo Baggins!")
case ("twostraws", "fr0st1es"):
   print("Hello, Paul Hudson!")
default:
   print("Who are you?")
}

In this instance, both parts of the tuple must match the case in order for it to be executed.

Partial matches
When working with tuples, there are some occasions when you want a partial match: you care 
what some values are but don’t care about others. In this situation, use underscores to represent 
“any value is fine”, like this:

let authentication = (name: "twostraws", password: "fr0st1es", 
ipAddress: "127.0.0.1")

www.hackingwithswift.com4



Pattern matching

switch authentication {
case ("bilbo", "bagg1n5", _):
   print("Hello, Bilbo Baggins!")
case ("twostraws", "fr0st1es", _):
   print("Hello, Paul Hudson!")
default:
   print("Who are you?")
}

Remember: Swift will take the first matching case it finds, so you need to ensure you look for 
the most specific things first. For example, the code below would print “You could be 
anybody!” because the first case matches immediately, even though later cases are “better” 
matches because they match more things:

switch authentication {
case (_, _, _):
   print("You could be anybody!")
case ("bilbo", "bagg1n5", _):
   print("Hello, Bilbo Baggins!")
case ("twostraws", "fr0st1es", _):
   print("Hello, Paul Hudson!")
default:
   print("Who are you?")
}

Finally, if you want to match only part of a tuple, but still want to know what the other part 
was, you should use let syntax.

switch authentication {
case ("bilbo", "bagg1n5", _):
   print("Hello, Bilbo Baggins!")
case ("twostraws", let password, _):
   print("Hello, Paul Hudson: your password was \(password)!")

www.hackingwithswift.com 5



Chapter 1: Syntax

default:
   print("Who are you?")
}

Matching calculated tuples
So far we’ve covered the basic range of pattern-matching syntax that most developers use. 
From here on I want to give examples of other useful pattern-matching techniques that are less 
well known.

Tuples are most frequently created using static values, like this:

let name = ("Paul", "Hudson")

But tuples are like any other data structure in that they can be created using dynamic code. 
This is particularly useful when you want to narrow the range of values in a tuple down to a 
smaller subset so that you need only a handful of case statements.

To give you a practical example, consider the “fizzbuzz” test: write a function that accepts any 
number, and returns “Fizz” if the number is evenly divisible by 3, “Buzz” if it’s evenly 
divisible by 5, “FizzBuzz” if its evenly divisible by 3 and 5, or the original input number in 
other cases.

We can calculate a tuple to solve this problem, then pass that tuple into a switch block to 
create the correct output. Here’s the code:

func fizzbuzz(number: Int) -> String {
   switch (number % 3 == 0, number % 5 == 0) {
   case (true, false):
      return "Fizz"
   case (false, true):
      return "Buzz"
   case (true, true):

www.hackingwithswift.com6



Pattern matching

      return "FizzBuzz"
   case (false, false):
      return String(number)
   }
}

print(fizzbuzz(number: 15))

This approach breaks down a large input space – any number – into simple combinations of 
true and false, and we then use tuple pattern matching in the case statements to select the 
correct output.

Loops
As you’ve seen, pattern matching using part of a tuple is easy enough: you either tell Swift 
what should be matched, use let to bind a value to a local constant, or use _ to signal that you 
don’t care what a value is.

We can use this same approach when working with loops, which allows us to loop over items 
only if they match the criteria we specify. Let’s start with a basic example again:

let twostraws = (name: "twostraws", password: "fr0st1es")
let bilbo = (name: "bilbo", password: "bagg1n5")
let taylor = (name: "taylor", password: "fr0st1es")

let users = [twostraws, bilbo, taylor]

for user in users {
   print(user.name)
}

That creates an array of tuples, then loops over each one and prints its name value.

www.hackingwithswift.com 7



Chapter 1: Syntax

Just like the switch blocks we looked at earlier, we can use case with a tuple to match specific 
values inside the tuples. Add this code below the previous loop:

for case ("twostraws", "fr0st1es") in users {
   print("User twostraws has the password fr0st1es")
}

We also have identical syntax for binding local constants to the values of each tuple, like this:

for case (let name, let password) in users {
   print("User \(name) has the password \(password)")
}

Usually, though, it’s preferable to re-arrange the let to this:

for case let (name, password) in users {
   print("User \(name) has the password \(password)")
}

The magic comes when you combine these two approaches, and again is syntactically identical 
to a switch example we already saw:

for case let (name, "fr0st1es") in users {
   print("User \(name) has the password \"fr0st1es\"")
}

That filters the users array so that only items with the password “fr0st1es” will be used in the 
loop, then creates a name constant inside the loop for you to work with.

Don’t worry if you’re staring at for case let and seeing three completely different keywords 
mashed together: it’s not obvious what it does until someone explains it to you, and it will take 
a little time to sink in. But we’re only getting started…

www.hackingwithswift.com8



Pattern matching

Matching optionals
Swift has two ways of matching optionals, and you’re likely to meet both. First up is 
using .some and .none to match “has a value” and “has no value”, and in the code below this is 
used to check for values and bind them to local constants:

let name: String? = "twostraws"
let password: String? = "fr0st1es"

switch (name, password) {
case let (.some(name), .some(password)):
   print("Hello, \(name)")
case let (.some(name), .none):
   print("Please enter a password.")
default:
   print("Who are you?")
}

That code is made more confusing because name and password are used for the input 
constants as well as the locally bound constants. They are different things, though, which is 
why print("Hello, \(name)") won’t print Hello, Optional("twostraws") – the name being 
used is the locally bound unwrapped optional.

If it’s easier to read, here’s the same code with different names used for the matched constants:

switch (name, password) {
case let (.some(matchedName), .some(matchedPassword)):
   print("Hello, \(matchedName)")
case let (.some(matchedName), .none):
   print("Please enter a password.")
default:
   print("Who are you?")
}

www.hackingwithswift.com 9



Chapter 1: Syntax

The second way Swift matches optionals is using much simpler syntax, although if you have a 
fear of optionals this might only make it worse:

switch (name, password) {
case let (name?, password?):
   print("Hello, \(name)")
case let (username?, nil):
   print("Please enter a password.")
default:
   print("Who are you?")
}

This time the question marks work in a similar way as optional chaining: continue only if a 
value was found.

Both of these methods work equally well in for case let code. The code below uses them both 
to filter out nil values in a loop:

import Foundation
let data: [Any?] = ["Bill", nil, 69, "Ted"]

for case let .some(datum) in data {
   print(datum)
}

for case let datum? in data {
   print(datum)
}

Matching ranges
You’re probably already using pattern matching with ranges, usually with code something like 
this:

www.hackingwithswift.com10



Pattern matchingthis:

let age = 36

switch age {
case 0 ..< 18:
   print("You have the energy and time, but not the money")
case 18 ..< 70:
   print("You have the energy and money, but not the time")
default:
   print("You have the time and money, but not the energy")
}

A very similar syntax is also available for regular conditional statements – we could rewrite 
that code like this:

if case 0 ..< 18 = age {
   print("You have the energy and time, but not the money")
} else if case 18 ..< 70 = age {
   print("You have the energy and money, but not the time")
} else {
   print("You have the time and money, but not the energy")
}

That produces identical results to the switch block while using similar syntax, but I’m not a 
big fan of this approach. The reason for my dislike is simple readability: I don’t think “if case 
0 up to 18 equals age” makes sense if you don’t already know what it means. A much nicer 
approach is to use the pattern match operator, ~=, which would look like this:

if 0 ..< 18 ~= age {
   print("You have the energy and time, but not the money")
} else if 18 ..< 70 ~= age {
   print("You have the energy and money, but not the time")
} else {
   print("You have the time and money, but not the energy")

www.hackingwithswift.com 11



Chapter 1: Syntax

}

Now the condition reads “if the range 0 up to 18 matches age”, which I think makes a lot more 
sense.

An even cleaner solution becomes clear when you remember that 0 ..< 18 creates an instance 
of a Range struct, which has its own set of methods. Right now, its contains() method is 
particularly useful: it’s longer to type than ~= but it’s significantly easier to understand:

if (0 ..< 18).contains(age) {
   print("You have the energy and time, but not the money")
} else if (18 ..< 70).contains(age) {
   print("You have the energy and money, but not the time")
} else {
   print("You have the time and money, but not the energy")
}

You can combine this range matching into our existing tuple matching code, like this:

let user = (name: "twostraws", password: "fr0st1es", age: 36)

switch user {
case let (name, _, 0 ..< 18):
   print("\(name) has the energy and time, but no money")
case let (name, _, 18 ..< 70):
   print("\(name) has the money and energy, but no time")
case let (name, _, _):
   print("\(name) has the time and money, but no energy")
}

That last case binds the user’s name to a local constant called name irrespective of the two 
other values in the tuple. This is a catch all, but because Swift looks for the first matching case 
this won’t conflict with the other two in the switch block.

www.hackingwithswift.com12



Pattern matchingthis won’t conflict with the other two in the switch block.

Matching enums and associated values
In my experience, quite a few people don’t really understand enums and associated values, and 
so they struggle to make use of them with pattern matching. There’s a whole chapter on enums 
later in the book, so if you’re not already comfortable with enums and associated values you 
might want to pause here and read that chapter first.

Basic enum matching looks like this:

enum WeatherType {
   case cloudy
   case sunny
   case windy
}

let today = WeatherType.cloudy

switch today {
case .cloudy:
   print("It's cloudy")
case .windy:
   print("It's windy")
default:
   print("It's sunny")
}

You’ll also have used enums in basic conditional statements, like this:

if today == .cloudy {
   print("It's cloudy")
}

As soon as you add associated values, things get more complicated because you can use them, 

www.hackingwithswift.com 13



Chapter 1: Syntax

filter on them, or ignore them depending on your goal.

First up, the easiest option: creating an associated value but ignoring it:

enum WeatherType {
   case cloudy(coverage: Int)
   case sunny
   case windy
}

let today = WeatherType.cloudy(coverage: 100)

switch today {
case .cloudy:
   print("It's cloudy")
case .windy:
   print("It's windy")
default:
   print("It's sunny")
}

Using this approach, the actual switch code is unchanged.

Second: creating an associated value and using it. This uses the same local constant bind we’ve 
seen several times now:

enum WeatherType {
   case cloudy(coverage: Int)
   case sunny
   case windy
}

let today = WeatherType.cloudy(coverage: 100)

www.hackingwithswift.com14



Pattern matching

switch today {
case .cloudy(let coverage):
   print("It's cloudy with \(coverage)% coverage")
case .windy:
   print("It's windy")
default:
   print("It's sunny")
}

Lastly: creating an associated type, binding a local constant to it, but also using that binding to 
filter for specific values. This uses the where keyword to create a requirements clause that 
clarifies what you’re looking for. In our case, the code below prints two different messages 
depending on the associated value that is used with cloudy:

enum WeatherType {
   case cloudy(coverage: Int)
   case sunny
   case windy
}

let today = WeatherType.cloudy(coverage: 100)

switch today {
case .cloudy(let coverage) where coverage < 100:
   print("It's cloudy with \(coverage)% coverage")
case .cloudy(let coverage) where coverage == 100:
   print("You must live in the UK")
case .windy:
   print("It's windy")
default:
   print("It's sunny")

www.hackingwithswift.com 15



Chapter 1: Syntax

}

As promised I’m building up from basic examples, but if you’re ready I want to show you how 
to combine two of these techniques together: associated values and range matching. The code 
below now prints four different messages: one when coverage is 0, one when it’s 100, and two 
more using ranges from 1 to 50 and 51 to 99:

enum WeatherType {
   case cloudy(coverage: Int)
   case sunny
   case windy
}

let today = WeatherType.cloudy(coverage: 100)

switch today {
case .cloudy(let coverage) where coverage == 0:
   print("You must live in Death Valley")
case .cloudy(let coverage) where (1...50).contains(coverage):
   print("It's a bit cloudy, with \(coverage)% coverage")
case .cloudy(let coverage) where (51...99).contains(coverage):
   print("It's very cloudy, with \(coverage)% coverage")
case .cloudy(let coverage) where coverage == 100:
   print("You must live in the UK")
case .windy:
   print("It's windy")
default:
   print("It's sunny")
}

If you want to match associated values in a loop, adding a where clause is the wrong approach. 
In fact, this kind of code won’t even compile:

www.hackingwithswift.com16



Pattern matching

let forecast: [WeatherType] = [.cloudy(coverage: 
40), .sunny, .windy, .cloudy(coverage: 100), .sunny]

for day in forecast where day == .cloudy {
   print(day)
}

That code would be fine without associated values, but because the associated value has 
meaning the where clause isn’t up to the job – it has no way to say “and bind the associated 
value to a local constant.” Instead, you’re back to case let syntax, like this:

let forecast: [WeatherType] = [.cloudy(coverage: 
40), .sunny, .windy, .cloudy(coverage: 100), .sunny]

for case let .cloudy(coverage) in forecast {
   print("It's cloudy with \(coverage)% coverage")
}

If you know the associated value and want to use it as a filter, the syntax is similar:

let forecast: [WeatherType] = [.cloudy(coverage: 
40), .sunny, .windy, .cloudy(coverage: 100), .sunny]

for case .cloudy(40) in forecast {
   print("It's cloudy with 40% coverage")
}

Matching types
You should already know the is keyword for matching, but you might not know that it can be 
used as pattern matching in loops and switch blocks. I think the syntax is quite pleasing, so I 
want to demonstrate it just briefly:

www.hackingwithswift.com 17



Chapter 1: Syntax

let view: AnyObject = UIButton()

switch view {
case is UIButton:
   print("Found a button")
case is UILabel:
   print("Found a label")
case is UISwitch:
   print("Found a switch")
case is UIView:
   print("Found a view")
default:
   print("Found something else")
}

I’ve used UIKit as an example because you should already know that UIButton inherits from 
UIView, and I need to give you a big warning…

Remember: Swift will take the first matching case it finds, and is returns true if an object is a 
specific type or one of its parent classes. So, the above code will print “Found a button”, 
whereas the below code will print “Found a view”:

let view: AnyObject = UIButton()

switch view {
case is UIView:
   print("Found a view")
case is UIButton:
   print("Found a button")
case is UILabel:
   print("Found a label")
case is UISwitch:
   print("Found a switch")

www.hackingwithswift.com18



Pattern matching

default:
   print("Found something else")
}

To give you a more useful example, you can use this approach to loop over all subviews in an 
array and filter for labels:

for label in view.subviews where label is UILabel {
   print("Found a label with frame \(label.frame)")
}

Even though where ensures only UILabel objects are processed in the loop, it doesn’t actually 
do any typecasting. This means if you wanted to access a label-specific property of label, such 
as its text property, you need to typecast it yourself. In this situation, using for case let instead 
is easier, as this filters and typecasts in one:

for case let label as UILabel in view.subviews {
   print("Found a label with text \(label.text)")
}

Using the where keyword
To wrap up pattern matching, I want to demonstrate a couple of interesting ways to use where 
clauses so that you can get an idea of what it’s capable of.

First, an easy one: loop over an array of numbers and print only the odd ones. This is trivial 
using where and modulus, but it demonstrates that your where clause can contain calculations:

for number in numbers where number % 2 == 1 {
   print(number)
}

You can also call methods, like this:

www.hackingwithswift.com 19



Chapter 1: SyntaxYou can also call methods, like this:

let celebrities = ["Michael Jackson", "Taylor Swift", "Michael 
Caine", "Adele Adkins", "Michael Jordan"]

for name in celebrities where !name.hasPrefix("Michael") {
   print(name)
}

That will print “Taylor Swift” and “Adele Adkins”. If you want to make your where clause 
more complicated, just add operators such as &&:

let celebrities = ["Michael Jackson", "Taylor Swift", "Michael 
Caine", "Adele Adkins", "Michael Jordan"]

for name in celebrities where name.hasPrefix("Michael") && 
name.count == 13 {
   print(name)
}

That will print “Michael Caine”.

While it’s possible to use where to strip out optionals, I wouldn’t recommend it. Consider the 
example below:

let celebrities: [String?] = ["Michael Jackson", nil, "Michael 
Caine", nil, "Michael Jordan"]

for name in celebrities where name != nil {
   print(name)
}

That certainly works, but it does nothing about the optionality of the strings in the loop so it 
prints out this:

www.hackingwithswift.com20



Pattern matching

Optional("Michael Jackson")
Optional("Michael Caine")
Optional("Michael Jordan")

Instead, use for case let to handle optionality, and use where to focus on filtering values. 
Here’s the preferred way of writing that loop:

for case let name? in celebrities {
   print(name)
}

When that runs, name will only contain the strings that had values, so its output will be:

Michael Jackson
Michael Caine
Michael Jordan

www.hackingwithswift.com 21



Nil coalescing
Swift optionals are one of the fundamental ways it guarantees program safety: a variable can 
only be used if it definitely has a value. The problem is that optionals make your code a bit 
harder to read and write, because you need to unwrap them safely.

One alternative is to explicitly unwrap optionals using !. This is also known as the “crash 
operator” because if you use ! with an optional that is nil, your program will die immediately 
and your users will be baying for blood.

A smarter alternative is the nil coalescing operator, ??, which allows you to access an optional 
and provide a default value if the optional is nil.

Consider this optional:

let name: String? = "Taylor"

That’s a constant called name that contains either a string or nil. If you try to print that using 
print(name) you’ll see Optional("Taylor") rather than just “Taylor”, which isn’t really what 
you want.

Using nil coalescing allows us to use an optional’s value or provide a default value if it’s nil. 
So, you could write this:

let name: String? = "Taylor"
let unwrappedName = name ?? "Anonymous"
print(unwrappedName)

That will print “Taylor”: name was a String?, but unwrappedName is guaranteed to be a 
regular String – not optional – because of the nil coalescing operator. To see the default value 
in action, try this instead:

let name: String? = nil
let unwrappedName = name ?? "Anonymous"

www.hackingwithswift.com22



Nil coalescing

print(unwrappedName)

That will now print “Anonymous”, because the default value is used instead.

Of course, you don’t need a separate constant when using nil coalescing – you can write it 
inline, like this:

let name: String? = "Taylor"
print(name ?? "Anonymous")

As you can imagine, nil coalescing is great for ensuring sensible values are in place before you 
use them, but it’s particularly useful in removing some optionality from your code. For 
example:

func returnsOptionalName() -> String? {
   return nil
}

let returnedName = returnsOptionalName() ?? "Anonymous"
print(returnedName)

Using this approach, returnedName is a String rather than a String? because it’s guaranteed 
to have a value.

So far, so straightforward. However, nil coalescing gets more interesting when you combine it 
with the try? keyword.

Consider a simple app that lets a user type and save text. When the app runs, it wants to load 
whatever the user typed previously, so it probably uses code like this:

do {
   let savedText = try String(contentsOfFile: "saved.txt")
   print(savedText)
} catch {

www.hackingwithswift.com 23



Chapter 1: Syntax

   print("Failed to load saved text.")
}

If the file exists, it will be loaded into the savedText constant. If not, the contentsOfFile 
initializer will throw an exception, and “Failed to load saved text” will be printed. In practice, 
you’d want to extend this so that savedText always has a value, so you end up with something 
like this:

let savedText: String

do {
   savedText = try String(contentsOfFile: "saved.txt")
} catch {
   print("Failed to load saved text.")
   savedText = "Hello, world!"
}

print(savedText)

That’s a lot of code and it doesn’t really accomplish very much. Fortunately, there’s a better 
way: nil coalescing. Remember, try has three variants: try attempts some code and might 
throw an exception, try! attempts some code and crashes your app if it fails, and try? attempts 
some code and returns nil if the call failed.

That last one is where nil coalescing steps up to the plate, because this exactly matches our 
previous examples: we want to work with an optional value, and provide a sensible default if 
the optional is nil. In fact, using nil coalescing we can rewrite all that into just two lines of 
code:

let savedText = (try? String(contentsOfFile: "saved.txt")) ?? 
"Hello, world!"
print(savedText)

www.hackingwithswift.com24


