
Paul Hudson

UW04
)"$,*/(�8*5)

HACKING WITH SWIFT

COMPLETE TUTORIAL COURSE

Learn to make tvOS
apps with real-world
Swift projectsFREE SAMPLE

Project 1
Randomly Beautiful

www.hackingwithswift.com2

Setting up
In this first project we’re going to build a replacement for the built-in Apple TV screensaver.
By default, you get slow-motion flyovers of several locations around the world, and I have to
admit it’s quite beautiful. But as with most things, the novelty wears off sooner or later, and
that’s where this app comes in.

To make this work you’re going to meet some of the fundamental tvOS components: creating
screens of data using UIViewController, displaying images using UIImageView, showing
scrolling lists of data using UITableView, and even a little animation to make our images
crossfade.

But there’s more. As I’ve said previously, tvOS is a platform of consumption, which means
that learning to fetch and parse remote data is important. So, we’re going to start with that
now, and use it several times in future projects so you have lots of time to get the hang of it.

This means I need to teach you two techniques that normally I would leave until later on: how
to parse JSON data, and how to run code in the background. First projects are always long and
slow because you have so many fundamental techniques to learn just to get moving, but with
those extra topics added on top I’ve had to work extra hard to structure this project so you
learn new things in a slow, structured way.

Let’s get started now: launch Xcode and create a new tvOS project using the Single View App
template.

www.hackingwithswift.com 3

Project 1: Randomly Beautiful

When you click Next, you’ll be asked to name your project and provide a few other fields.
These are important, and they are the same in almost all the projects in this book, so please
take the time to enter them carefully:

• For Project Name enter “Project1”.
• For Team you should select your App Store team if you have one, or use None.
• For Organization Name just use the default value.
• For Organization Identifier enter a unique identifier your app, using reverse domain name
format. For example, “com.hackingwithswift.project1” is fine.

• Choose Swift for your language, otherwise the rest of this book will be very confusing
indeed.

• Uncheck all three checkboxes.

www.hackingwithswift.com4

Setting up

When you click Next you’ll be asked where you want to save the project – somewhere like
your desktop is fine. Click Create to finish, and you’re done!

www.hackingwithswift.com 5

Designing a menu
The default Xcode template gives us five interesting files to work with, listed on the left of the
Xcode window in the project navigator.

• AppDelegate.swift is there to contain code belonging to your whole application. For
example, code that runs when the app is first launched, or when it’s being exited.

• ViewController.swift contains code the default screen given to us by the tvOS template.
It’s almost empty right now because the default screen does nothing right now.

• Main.storyboard contains the user interface design for our app. We’ll be using that soon to
draw out something more useful.

• Assets.xcassets is an asset catalog, which is where you store images to be used in your
apps. When Xcode builds your code, asset catalogs get converted into an optimized format
for faster loading.

• Info.plist customizes some global app settings, such as its name and default theme.

Before we dive into any of those, I’d like you to press Cmd+R on your keyboard to build and
run your code. Alternatively, you can press the Play button that is near the top-left of the
Xcode window.

After a second or two, Xcode will finish building your code, and it should launch the tvOS
simulator so you can see the app in action. And by “action” I mean completely blank, doing
nothing at all – but that’s OK, because we only just started.

While you’re in the simulator, you can leave your app by pressing the Escape key on your
keyboard. This is the equivalent of pressing the Menu button on the Siri remote, which should
either return to the previous screen or quit the app entirely if there was no previous screen. If
you want to quit the app entirely, go back to Xcode and press Cmd+. (a period), which
terminates debugging.

OK, let’s make our app do something more interesting: open Main.storyboard by selecting it in
the project navigator on the left of your Xcode window. This will cause Xcode to load our user
interface for editing using Interface Builder – an Xcode component that lets us create

www.hackingwithswift.com6

Designing a menu

interfaces by dragging and dropping components visually.

Tip: Interface Builder is usually just called IB.

Storyboards let us design multiple screens of our app side by side, much like you might
imagine the storyboard of a movie – you can see scenes alongside each other, as well as how
the flow moves between them. Right now that’s just a single empty screen, so you should see
an empty rectangle with the title “View Controller” above it.

Note: if you look at my screenshot you’ll see it’s made up of four vertical columns. Sometimes
Xcode hides the second column, known as the document outline, which is a shame because it’s
really helpful – if you don’t see it, go to the Editor menu and choose Show Document Outline
before continuing.

This first screen – a view controller, in Apple parlance – needs three user interface components
to make it complete: a logo for our app, a brief description line giving credit to our data source,
and a table view, which is a vertically scrolling list component that the user can use to select
items. We’re going to let the user choose from a list of photo categories they want to view, and

www.hackingwithswift.com 7

Project 1: Randomly Beautiful

a table view is perfect for that.

If you press Cmd+Shift+L, Xcode should show you the object library – a list of components
you can drag out onto the canvas. It should start with “View Controller” at the top, but it’s a
long list of alternatives.

Tip: At the top of the object library is a button to toggle its layout between grid and table, plus
a filter box to let you find things faster. If you currently have the object library in grid mode, I
suggest you change to table mode and leave it there, because you get a few lines of description
next to each UI component.

To start with, find “Image View” in the object library, then drag it onto the view controller
canvas. You can use the drag handles to resize it if you wish, but it’s often easier to type them
in directly.

To enter sizes for this image view, go to the size inspector. IB’s inspectors are in the top-right
of the Xcode window and there are six of them. The size inspector is the last but one, and has a
small ruler icon, but it’s easiest to bring it up by pressing Alt+Cmd+5 on your keyboard. Give
the image an X value of 638, a Y value of 91, then a width of 644 and a height of 323.

www.hackingwithswift.com8

Designing a menu

That’s a big space for our image, but remember: this needs to be clearly visible across the
room. As you might imagine, image views display images, so we need to add an image to our
project. I already made one for you, and you should have received it with the project files you
downloaded with this book. Look inside the project1-files folder and you should see the files
“logo.png” and “logo@2x.png” – that’s the logo we’re going to drop into our new image view.

In Xcode, look for Assets.xcassets in the project navigator. I already said this is where you
store image assets, and it’s time to use it – please select it now. You should see the IB
document outline replaced with two list items: “App Icon & Top Shelf Image”, and
“LaunchImage”.

What you need to do is select logo.png and logo@2x.png in Finder, then drag them into your
Xcode asset catalog, into the white space directly below “LaunchImage”. When you release
your mouse button, “logo” will appear in the list, and next to it you should see the logo with 1x
and 2x written by them.

www.hackingwithswift.com 9

Project 1: Randomly Beautiful

Now, before we continue I want to make an important point: the reason there are two sets of
graphics is because I’ve given you the logo for 1080p TV (logo@1x.png) and the logo for 4K
TVs (logo@2x.png). 4K TVs have precisely twice the vertical and horizontal resolution as
1080p TVs, hence the “2x” name.

When you write apps for Apple TV, you ship both sets of assets in your code – one set for
regular Apple TVs, and another for Apple TV 4K. When those same apps get distributed to
users through the App Store, they only ever see one set of assets, which is the set that matches
their hardware. This means you get to support all devices as intended, but you don’t end up
doubling your app’s install size.

Right, back to what actually exists today: we just added our image to the asset catalog, which
means we’re ready to use it. Go back to Main.storyboard and select the image view, but this
time I’d like you to select the attributes inspector – it’s the one directly to the left of the size
inspector, accessible using Alt+Cmd+4.

Unlike the relatively simple size inspector, the attributes inspector has a busy job: it contains a
huge variety of properties that affect the way UI components look and work, and you’ll usually

www.hackingwithswift.com10

Designing a menu

need to scroll down to see them all. In our case we need the very first option: “Image”. Click
the small down arrow to the right of “Image” and choose “logo” from the list – Xcode already
scanned our asset catalog to find the image.

Below the image we’re going to write one line of text giving credit to where our images come
from. In this app, we’re going to use a website called Unsplash (https://unsplash.com/): you
have to register in order to use their API, but it’s free to use and the images are all available
completely free – free to download, free to modify, free to distribute, free to sell, and so on.
However, if you use their API they do ask you give credit to Unsplash and each individual
photographer inside your app.

Look in the object library for a Label control, then drag one below the image. Using the size
inspector, give it X:445, Y:454, width: 1030, and height: 46. In the attributes inspector, change
its alignment to center, then give it this text: “A selection of random, beautiful pictures from
Unsplash.”

www.hackingwithswift.com 11

Project 1: Randomly Beautiful

The last thing we need for this view controller is a table, which is a vertically scrolling list of
options the user can choose from. If you search for “table” in the object library you’ll see three
similar options, but you want the one marked “Table View”.

Tip for iOS developers: Table view controllers are very common on iOS, but less so on tvOS
because they occupy the full width of the screen – this doesn’t look great with such a wide
canvas.

Drag a table view onto the canvas, and use the size inspector to give it the size X:587, Y:562,
width: 747, and height: 476.

www.hackingwithswift.com12

Designing a menu

By default, a table view just a large gray space on your IB canvas, but we’re going to fill it
with what’s called a prototype cell. This is IB’s way of designing what our cells ought to look
like in an abstract way: what UI components it should contain, where they should be, and so
on. Xcode will then create one of these prototype cells for each real cell in the table, where it
gets injected with real values.

This is an easy app, so we’re going to use an easy cell. First, make sure the table view is
selected then go to the attributes inspector. Near the top you should see “Prototype Cells: 0” –
 please change that to 1. You’ll see the canvas table view change to show a darker space at the
top – that’s our prototype cell.

tvOS has four different built-in cell types that we can use without having to do any work
ourselves, and we’re going to use one of them in this project. To do that, look in the document
outline for “Table View” – it should have a small gray disclosure arrow next to it.

www.hackingwithswift.com 13

Project 1: Randomly Beautiful

If you open that disclosure arrow now, you’ll see “Table View Cell” inside – that’s our
prototype cell, so please select it. In the attributes inspector you should now see an option
saying “Style: Custom”. Please change that from Custom to Basic, which is a built-in cell
prototype that adds one line of large text.

While you’re there I’d like you to make two more small changes to this cell. First, look just a
little below for the Identifier field, and enter “Cell” in the text box next to it. Second, change
“Accessory: None” from None to Disclosure Indicator – this adds a small gray arrow to the
right end of the cell.

www.hackingwithswift.com14

Designing a menu

Before we’re done with the user interface for this view controller, we need to tell the table
view two things: where it gets its data from, and who should be notified when the user interacts
with the table. In both the case the answer is “the view controller that own it,” but we still need
to tell Xcode that.

In IB, this is done by making a connection between the table view and its view controller.
First, select the table view – I suggest you use the document outline for this, because it’s
possible to click on the wrong thing on the canvas. Now hold down the Ctrl key on your
keyboard, and click and drag from the table view up to “View Controller” above it – it has a
yellow and white icon next to it.

www.hackingwithswift.com 15

Project 1: Randomly Beautiful

When you release your mouse button you’ll see a menu with two options: “dataSource” and
“delegate”. Please choose “dataSource”, then repeat the procedure and choose “delegate” the
second time around.

That’s all we need for this view controller, so try pressing Cmd+R to build and run your app.
After thinking for a few seconds, the app should install into the simulator and run – only to
crash a split second later.

Xcode will throw you back to AppDelegate.swift and highlight a completely meaningless line
in red. It will also print a wall of mostly meaningless nonsense into its log, which is an area
below the source code editor that appears as needed. If you scroll all the way past the nonsense
in the log, you’ll finally reach this text: “-[Project1.ViewController tableView:
numberOfRowsInSection:]: unrecognized selector sent to instance”. Trust me: that the least
nonsensical part of the error.

Translated, what it’s trying to say is “the table view asked its data source (which we set to be

www.hackingwithswift.com16

Designing a menu

its view controller) how many rows are in the table, and the view controller didn’t know what
to do.” That’s fair enough: we did tell the table view to use its view controller for its data
source, but we didn’t tell the view controller how to do any of that.

To fix this we need to write our first Swift code, inside ViewController.swift. Now, this is a bit
confusing so listen carefully: in tvOS a view controller represents one screen of information,
and of course screens of information come in an infinite variety of layouts. When we created
our app from the Single View App template, Xcode automatically created a new custom view
controller for us, which is called ViewController.

So, view controllers generally are there to provide any sort of screen we need, but this
particular view controller – the one in ViewController.swift that Xcode made for us – is just
one type of view controller, and will be used to control the screen we just designed.

Click on ViewController.swift to open it for editing and you should see this code:

import UIKit

class ViewController: UIViewController {
 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,
typically from a nib.
 }
}

There are five interesting things going on in there:

 1. The file starts import UIKit, which means “bring in all the functionality from UIKit so I
can use it,” which means we get all of Apple’s user interface toolkit to use.

 2. It creates a new custom data type – a class – called ViewController. The :
UIViewController part means “make this build on the existing UIViewController class,
which is Apple’s built-in data type for handling view controllers.

www.hackingwithswift.com 17

Project 1: Randomly Beautiful

 3. The override func viewDidLoad() line starts a new method. All the code inside the
opening and closing braces ({ and }) form the method body. This method is called by tvOS
as soon as our user interface has finished loading – we can put code in here to customize it.
It’s marked override because this method already exists on UIViewController, so we’re
saying “we want our new class to override the one it inherited from its parent.”

 4. The super.viewDidLoad() line means, “tell the class we inherited from to run its own code
for this method.” This is important: we let UIViewController do its thing first, then add
our own code after.

 5. Finally, all lines that start with // are comments. These are ignored by Xcode, so you can
write whatever you want in there. It’s a good idea to use comments to document what your
code is trying to do.

Tip: When you see a data type that starts with “UI”, such as “UIViewController”, it means it
comes from UIKit.

The two methods Xcode provide for us do nothing other than call their respective methods on
UIViewController. In Swift, any method you don’t override will automatically get called on
its parent, so we can actually delete these two and nothing will change.

So, change your ViewController.swift file this:

import UIKit

class ViewController: UIViewController {

}

In IB we made connections between the table view and its view controller to mark the latter as
being the data source and delegate for the table. Even though IB is aware of that, Swift isn’t –
 we need to make it clear that our view controller has both those roles.

In Swift, this is done using protocols, which are bit like promises. By telling Swift a class
conforms to a protocol, you’re promising it implements all the methods required to make that

www.hackingwithswift.com18

Designing a menu

protocol work. In our case we need to make our ViewController class conform to two
protocols: UITableViewDataSource so it says it knows how to serve data to a table, and
UITableViewDelegate so it says it knows how to respond to user interaction with the table.

Conforming to a protocol is done in two steps. First, you modify the class definition to list the
protocols you want to conform to. Edit the class ViewController line to this:

class ViewController: UIViewController, UITableViewDataSource,
UITableViewDelegate {

That now means “create a new data type called “ViewController”, that builds on everything
already defined by Apple’s UIViewController class, and specify that this new class conforms
to the UITableViewDataSource and UITableViewDelegate protocols.”

The second step in conforming to protocols is to implement the methods those protocols need
– to fulfill the promise, as it were. In fact, Xcode will almost certainly have placed a red error
symbol next to “class ViewController”, because it has detected that we haven’t implemented
the required methods from those protocols.

To make the error go away, we need to implement two methods: one telling the table view how
many rows it should have, and one telling it what should be in each row. As I said already, the
table view is there to let users choose a picture category to view, so the first step is to define
the categories we’re going to show.

Add this code inside the ViewController class, directly before the closing brace:

var categories = ["Airplanes", "Beaches", "Bridges", "Cats",
"Cities", "Dogs", "Earth", "Forests", "Galaxies", "Landmarks",
"Mountains", "People", "Roads", "Sports", "Sunsets"]

That’s a property, which is a variable that belongs to this class – we can use it in all our
methods if we want. You’re welcome to change the categories to whatever interest you, but
those are fine to get us started.

www.hackingwithswift.com 19

Project 1: Randomly Beautiful

Hit return a couple of times below that property in order to make some space, then type
“numberofrows” – Xcode’s code completion system should spring to life and suggest a method
called numberOfRowsInSection. Press return to accept its suggestion, and you’ll see this
empty method appear:

func tableView(_ tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {

}

This is the table view data source method that gets called to figure out how many items you
want in the table. We just made the categories array containing all the categories we want, so
our answer to this is clear: we want as many rows as we have categories.

So, add this line inside the numberOfRowsInSection method:

return categories.count

That’s one of the two required methods complete. The next one is a little longer: its job is to
create a table view cell using the configuration we made earlier, fill in its text label using the
text of the current category, then send it back.

Again, the best way to get started with this is by using code completion, so go to the end of the
numberOfRowsInSection method – after its closing brace – and press return a few times.
Now type “cellfor” and Xcode should offer to autocomplete the cellForRowAt method, like
this:

func tableView(_ tableView: UITableView, cellForRowAt
indexPath: IndexPath) -> UITableViewCell {

}

This method, cellForRowAt, is called multiple times when your app starts, once for each row

www.hackingwithswift.com20

Designing a menu

that’s visible in the table. As your user scrolls up and down, it gets called again and again so
you can can create and configure more rows – it only ever loads just enough for the user to see.

As you might imagine, scrolling a table quickly would mean creating and destroying an awful
lot of table view cells, which is a waste of time. To work around this, tvOS lets us reuse cells
that would otherwise have been destroyed, which means it effectively reuses the same eight or
so cells as the table scrolls up or down.

Let’s fill in this method now. First we need to either create a new table view cell or reuse one
if possible, and in tvOS that’s a single method call: dequeueReusableCell(withIdentifier:).
The identifier string is something we set in our storyboard – we named ours “Cell”, which is a
common default. This method also wants to know the index path – position in the table – of the
cell you want to load, because it might already have that cell in its cache. Fortunately, we get
passed precisely that as a parameter to the cellForRowAt method, so we’ll just pass it along.

Add this line of code to the cellForRowAt method:

let cell = tableView.dequeueReusableCell(withIdentifier:
"Cell", for: indexPath)

Next we need to configure the text label of our cell so that it contains the correct category text.
When we first created the table view cell it didn’t have any text inside, but when we changed
its type from Custom to Basic a label appeared saying “Title”. This is important: some table
cells have text labels and others don’t, so even though Xcode will give us back a cell object
that has a textLabel property we can use, we need to do so carefully because it might have
nothing in there.

This is where Swift’s optionals come in. Optionals are a way of saying “this might have a
value or it might not; don’t let me use it directly.” Because if you do use an empty value
directly your app crashes, and no one wants that.

Optionals in Swift use question marks to denote that we’re unsure about them. When we do
that, Swift adds a lot of boilerplate code behind the scenes: it figures out whether the optional
has a value, and if so uses it. If it doesn’t have a value, Swift stops running this line of code

www.hackingwithswift.com 21

Project 1: Randomly Beautiful

and moves on to the next one. This means the code works as intended if our optional has a
value, but exits safely otherwise.

For example, you could write this:

cell.textLabel?.text = "Hello, world!"

If textLabel doesn’t exist – i.e., it’s value is set to nil – then the rest of the line does nothing.
Perfect!

Back to our method, we need to look up the correct title to put into each row. We can use the
indexPath parameter for this too, because it tell us the position of the cell being requested. An
index path is made up of a section number and a row number, although in this app we’re not
using sections. So, we can figure out which category to show by looking it up directly like this:
categories[indexPath.row].

Putting those two pieces of code together, we can write the second line of cellForRowAt. Add
this code now:

cell.textLabel?.text = categories[indexPath.row]

Now that we have created and configured the cell we need to send it back so it can be drawn
on the screen. To do that, we’ll use the return keyword to send a value back from the method,
passing it our cell variable. Add this final line to the cellForRowAt method now:

return cell

With that line of code in place, Xcode’s error messages will finally go away because our class
conforms fully to the two protocols we requested. In fact, at this point we’re finally in a
position where we can run the code again, so press Cmd+R to build and run now.

www.hackingwithswift.com22

Designing a menu

Much better – it doesn’t crash any more! You should be able to use the cursor keys on your
keyboard to swipe up and down through the rows, or use the touchpad on your Siri remote if
you have one connected.

As you move between table rows, you’ll notice a gentle animation that highlights what part of
the user interface has control right now. In tvOS this is called focus, and it’s there to help guide
users when they are sitting far from the screen.

The effect is a bit subtle by default, because for some unknown reasons tvOS table views are
misconfigured by default. If you want to reveal focus in all its glory, re-open Main.storyboard,
select the table view cell (it’s just called Cell in the document outline), then uncheck its Clips
To Bounds box in the attributes inspector.

When you run the program now, you’ll see the focus animation effect is more pronounced –
cells seem to lift off the rest of the table in 3D, with a gentle shadow behind them.

www.hackingwithswift.com 23

Project 1: Randomly Beautiful

That’s our first screen complete. It’s simple but clear, which is a real hallmark of good tvOS
design – well done!

www.hackingwithswift.com24

