
Paul Hudson

 macOSHACKING WITH

HACKING WITH SWIFT

SWIFTUI EDITION

Learn to make desktop
apps with real-world
Swift projectsFREE SAMPLE

Project 1
Storm Viewer
Get started coding in Swift by making an image viewer app and learning key concepts.

www.hackingwithswift.com2

Storm Viewer: Setting up
In this project you'll produce an application that lets users scroll through a list of images, then
select one to view. It's deliberately simple, because there are many other things you'll need to
learn along the way, so strap yourself in – this is going to be long!

Let’s get started: launch Xcode, and choose "Create a new project" from the welcome screen.
You’ll be asked to choose a template for the new project, so please choose macOS > App, then
click Next.

For Product Name enter StormViewer, then make sure you have Swift selected for language
and SwiftUI for interface. This screen contains some checkboxes that affect what kind of
template you’re given. None of the projects in this book use these features, so leave them all
unchecked.

One of the fields you'll be asked for is "Organization Identifier", which is a unique identifier
usually made up of your personal website domain name in reverse. For example, I would use
com.hackingwithswift if I were making an app. You'll need to put something valid in there if
you're deploying to devices, but otherwise you can just use com.example.

www.hackingwithswift.com 3

Project 1: Storm Viewer

Now click Next again and you'll be asked where you want to save the project – your desktop is
fine. Once that's done, you'll be presented with the example project that Xcode made for you.

The first thing we need to do is make sure you have everything set up correctly, and that means
running the project as-is: look for the Play triangle button near the top-left of the Xcode
window, and click it now. This will compile your code, which is the process of converting it to
instructions that your computer can understand, then launch the app.

As you'll see when you interact with the app, our “app” just shows a small window saying
“Hello, world!” – it does nothing at all, at least not yet. You can’t resize it much, but you can
move it around, minimize it, or even make it full screen.

www.hackingwithswift.com4

Storm Viewer: Setting up

You'll be starting and stopping projects a lot as you learn, so there are three basic tips you need
to know:

• You can run your project by pressing Cmd+R. This is equivalent to clicking the play
button.

• You can stop a running project by pressing Cmd+. when Xcode is selected.
• If you have made changes to a running project, just press Cmd+R again. Xcode will
prompt you to stop the current run before starting another. Make sure you check the "Do
not show this message again" box to avoid being bothered in the future.

This project is all about letting users select images to view, so you're going to need to import
some pictures. You should have downloaded the project files for this book already, but if you
haven’t please get them from here: https://github.com/twostraws/macOS

If you look in the project1-files directory you’ll see the collection of JPEG files that we’ll be
using for this project. These need to be copied into your project, but in a very precise way
thanks to the way macOS handles image assets.

On the left of your Xcode window you’ll see a list of files in your project, one of which is

www.hackingwithswift.com 5

Project 1: Storm Viewer

called “Assets.xcassets”. This is your asset catalog, which is where you need to store all the
images you want to use in your project. When Xcode builds the project this asset catalog is
automatically built too, and it optimizes the images for maximum performance when you
deploy through the App Store.

Select the asset catalog now, and you should see a couple of placeholder assets like “AppIcon”
and “AccentColor”. I’d like you to drag all 10 image assets from Finder into the asset catalog
now, which means they are ready for us to use in the project.

www.hackingwithswift.com6

Working with views
Now that we have some data to work with, I want you to open ContentView.swift so we can
start using it. This file is the default in all SwiftUI projects on all platforms, and provides a
simple SwiftUI layout that produces the “Hello, world!” text you saw earlier.

You should see something like this:

struct ContentView: View {
 var body: some View {
 Text("Hello, world!")
 .padding()
 }
}

There are lots of small but important things in there, so let me break it down quickly:

 1. It defines a new struct called ContentView. All our SwiftUI layouts are structs because
behind the scenes these are simpler and faster for the system to create and manage.

 2. This struct conforms to the View protocol. In SwiftUI anything that renders content must
conform to the View protocol so that it can tell SwiftUI what it draws.

 3. The struct has a computed property called body, which is the only requirement of the View
protocol. This is where you create your layouts.

 4. As you can see, this has the return value some View, which means “this view will itself
return some sort of views” – it might be images, text, sliders, buttons, and so on, but
ultimately every view must return something to draw.

 5. In this case our body contains only one thing, which is a Text view with the string “Hello,
World!”

 6. After the text view is a method call, padding(), which adds some spacing around a view so
that other views don’t butt up directly against it. In SwiftUI we call this a modifier, because
it modifies the way the text view looks. It’s common to have many modifiers stacked up for
a single view.

www.hackingwithswift.com 7

Project 1: Storm Viewer

Below that view struct is more code that creates a preview of your view, and is designed to
show you a live preview of your layouts while you work – that’s the canvas on the right of
your code. You can show or hide this canvas by going to the Editor menu and clicking Canvas.

Over time you’ll learn more about how these work and what their subtleties are, but for now
you know enough to continue.

Now, in this app we’re going to show a list of pictures for the user to choose from, then show
individual pictures zoomed large when one is chosen. This split approach is a very common
layout on macOS: you see it in Finder, in iTunes, in Keynote, and even in Xcode, so it makes
sense to tackle it first.

In SwiftUI, we can get this horizontal split behavior using a new view type called HSplitView.
When you place one of these, you can go ahead and add two child views to represent the left
and right side of your split.

So, we might start with something like this:

struct ContentView: View {
 var body: some View {
 HSplitView {
 Text("Left")
 Text("Right")
 }
 }
}

www.hackingwithswift.com8

Working with views

That creates the HSplitView with Left and Right text views inside. If you run the app you’ll
see both text views should appear, although it’s not really apparent what the split view is
actually adding here.

You see, on macOS SwiftUI tries to size windows based on the size of its content, and in our
case that means our window size won’t be allowed to grow any larger than the space required
to show the two text views. It won’t always do this because some views are happy to resize
upwards, but text very strongly prefers to grow no bigger than needed, causing our window to
be tiny.

To make things significantly better, we’re going to add a modifier to each of those text views
called frame(). You already met the padding() modifier, which adds a fixed amount of space
around a view, but frame() lets us provide rules for how big each view should be. Sometimes
these rules are fixed – “I want this text view to be exactly 200 points wide”, for example, but
you can also provide minimum and maximum values to allow for flexibility.

Here we’re going to make both our text views have completely flexible width and height –
modify your code to this:

HSplitView {
 Text("Left")

www.hackingwithswift.com 9

Project 1: Storm Viewer

 .frame(maxWidth: .infinity, maxHeight: .infinity)

 Text("Right")
 .frame(maxWidth: .infinity, maxHeight: .infinity)
}

And now when you run the app again things should look a lot better because you can resize the
window freely. More importantly, you can also look for and drag the splitter pane that divides
the two pieces of text, to adjust how much space each side gets inside the window.

www.hackingwithswift.com10

Introduction to lists
All our work so far has led to something that looks only fractionally different from the gray
window we had straight out of the Xcode template. However, things are about to get a bit more
interesting: we’re going to start showing some dynamic information in our user interface.

We’re going to start with the left-hand pane of our split view first. This is going to contain a
list of pictures for the user to choose from, and in SwiftUI that’s handled by a component
called List.

Lists can work with a fixed range of data for times when you want to display static data, they
can use ranges when you need to repeat something multiple times, or they can use wholly
dynamic data such as a list of student names in a classroom.

Let’s try each of those out there so you can see how they work, starting with static data.
Replace your “Left” text view and its frame() modifier with this:

List {
 Text("Row 1")
 Text("Row 2")
 Text("Row 3")
 Text("Row 4")
 Text("Row 5")
}

www.hackingwithswift.com 11

Project 1: Storm Viewer

Unlike Text, List doesn’t need a frame() modifier because it automatically resizes to take up
all the available space.

Now let’s try recreating the same list using a range:

List(1..<6) { number in
 Text("Row \(number)")
}

What’s happening here is quite complex behind the scenes: List takes a closure as its last
parameter, which will be called once for every row in the list and is our chance to decide what
should go in each row – that’s what the number in is telling us.

When that new code runs it will produce exactly the same list as the static version, except
obviously it’s a lot less code!

Let’s look at the third example now: displaying names from an array. First, add this new
property to the ContentView struct:

let names = ["Amy", "Charles", "Jake", "Rosa"]

www.hackingwithswift.com12

Introduction to lists

Now change your List code to this:

List(names, id: \.self) { name in
 Text(name)
}

That’s a bit similar to the range List, but there’s an important change: id: \.self. This is
important, and in fact it’s so important it deserves some bold:

This is important.

When we create fixed views – when we type HSplitView with a List inside, then some Text,
etc – SwiftUI can see at compile time exactly how our view hierarchy looks, which means it
knows exactly which views are where.

In comparison, when we create dynamic views – when we loop over an array, for example –
 then SwiftUI doesn’t have all the information at compile time, it just knows there will be some
number of views being laid out when the code runs.

In order to make sure all its animations work correctly, so that it can insert new rows in the list
if a new name got added at runtime for example, SwiftUI needs to know how to identify each

www.hackingwithswift.com 13

Project 1: Storm Viewer

dynamic view uniquely. In the future I’ll show you how to create unique identifiers for your
data, but here we have a simple array of strings – the only thing about each string that makes it
unique is the string itself.

So, when we say List(names, id: \.self) we’re telling SwiftUI to create one row in our list for
each of the names, and to give each of those rows the identifier of the name itself. With that in
place, SwiftUI can now identify each part of our view hierarchy uniquely, which is exactly
what it wants.

Note: By using \.self for the identifier, we’ve told SwiftUI that every one of our strings will be
unique. If you try to add multiple instances of the same name it will almost certainly lead to
problems in the future.

Each of those three ways of creating a list is important, and you’ll definitely be using all three
extensively in the future.

You’ll also find you can combine them – you can create some rows as static, then loop over
some dynamic data, then create some more static rows, and so on. This is made possible
through a special view type called ForEach, which works much like the dynamic List: provide
it with an array of data to loop over, along with an identifier so it knows what makes each item
unique, plus a function to run for each item.

For example, we could mix static and dynamic data like this:

struct ContentView: View {
 let names = ["Amy", "Charles", "Jake", "Rosa"]

 var body: some View {
 List {
 Text("Static row 1")
 Text("Static row 2")

 ForEach(names, id: \.self) { name in
 Text(name)

www.hackingwithswift.com14

Introduction to lists

 }

 Text("Static row 3")
 Text("Static row 4")
 }
 }
}

You’ll find ForEach is useful in lots of other places where you want to repeatedly create
views – more on that later!

www.hackingwithswift.com 15

Loading our images
When you set up this project you should have copied the image assets I provided for you into
your asset catalog. Well, now it’s time to put them to use and show them inside our list.

You’ve already seen how List can be created using a range, and because our images are
numbered 1 through 10 we can use exactly that approach to show them all.

Replace your existing List code with this:

List(0..<10) { number in
 Text("Storm \(number + 1)")
}

That will show 10 rows, one for each storm file we added. If you run the app now you’ll see
them all, but you’ll also notice you can’t actually select any of the rows – this is because we
haven’t told SwiftUI that selection is even possible.

There’s a saying among SwiftUI developers that our “views are a function of their state,” but
while that’s only a handful of words it might be quite meaningless to you at first.

If you were playing a fighting game, you might have lost a few lives, scored some points,
collected some treasure, and perhaps picked up some powerful weapons. In programming, we
call these things state – the active collection of settings that describe how the game is right
now.

When we say SwiftUI’s views are a function of their state, we mean that the way your user
interface looks – the things people can see and what they can interact with – are determined by
the state of your program. For example, they can’t click Continue until they have entered their
name in a text field.

Because program state directly affects what’s shown in your user interface, SwiftUI needs to
know exactly what state you’re working with so it can watch for changes and update things as
needed. This is all done using a property wrapper, which is an extra piece of code that sits

www.hackingwithswift.com16

Loading our images

around any one of your properties to add bonus functionality – in this case it’s functionality
that lets SwiftUI watch for changes and update your view whenever the view changes.

In this program we need some state to track which row is currently selected, so add this now:

@State private var selectedImage: Int?

That does several things all in one, so let’s break it down:

 1. The @State property wrapper marks a piece of program state that we want to change as our
program runs.

 2. This particular property wrapper is used for local state – state that only this view uses – so
we’ve marked it as private to re-enforce that.

 3. The property is called selectedImage, which makes sense because it will track the image
number that is selected.

 4. It’s an integer, because it will track the image number.
 5. That integer is optional, because it’s possible for the user to click on nothing and thus

deselect their image.
 6. The integer has no default value, which means no image will be selected by default.

Just adding the new property isn’t enough to attach it to our List, though. For that we need
another important feature of SwiftUI: two-way bindings.

Two-way bindings allow information to flow in two ways: from our property to the user
interface, or from the user interface back to the property. In the case of our list, that means
changing our property using something like selectedImage = 5 will cause the selected row to
change in the UI as well, but also that clicking on a different row in the UI will cause the
property’s value to be updated.

Two-way bindings in SwiftUI are marked with dollar signs before their property names, so
let’s go ahead and bind the selection of our list to the selectedImage property – change your
List code to this:

List(0..<10, selection: $selectedImage) { number in

www.hackingwithswift.com 17

Project 1: Storm Viewer

If you run the app now you’ll see things are moving on, because you can now select any of the
rows to have them be highlighted, or click on some empty space on the list to deselect them all.

www.hackingwithswift.com18

Responding to image selection
Believe it or not, this project is almost finished! The last step is to respond to the user selecting
a picture in the list and showing the relevant image in the right-hand pane of our split view.

Making this work means meeting another new SwiftUI view, along with two new modifiers.
However, along the way you’ll get a much better idea of how SwiftUI responds to state
changes, and why it makes our life so much easier.

Right now the right-hand side of our split view just says “Right”, but really that needs to say
something more sensible – that text will be shown when the app first runs, before the user has
selected any image, so a little prompt is much more useful.

Change it to this:

Text("Please select an image")
 .frame(maxWidth: .infinity, maxHeight: .infinity)

Now for the important part: when the user does select an image, we need to replace that text
with the actual image they chose. This can be done with SwiftUI’s Image view, but the real
question is how we know which to show – the image or the text.

Well, our selectedImage property is an optional integer, so the answer here is straightforward:
if we can read a value from that property then we should be showing the image, otherwise we
should be showing the text. This can be done with if let to unwrap the optional safely, so put
this around your current Text prompt:

if let selectedImage = selectedImage {
 Image(String(selectedImage))
} else {
 // "Please select an image" text
}

Our selectedImage property is an integer, but SwiftUI’s Image view wants an asset name to

www.hackingwithswift.com 19

Project 1: Storm Viewer

load, so we need to convert that integer to a string. When that code runs SwiftUI will
automatically look in the asset catalog for a file matching our selected number – it ignores any
file extension, which means loading 1 will load our 1.png picture.

If you run the app now you’ll see something quite surprising happens: when you select a
picture, the size of your window will jump to something quite different, and it’s possible the
whole list on the left of the split view will disappear.

This happens for the same reason our original “Hello, world!” window was so small: SwiftUI
will automatically adjust its user interface to fit the size of its content. In this case our List has
a flexible width and height by default, but the new Image that gets shown has a fixed size of
whatever dimensions the image file has. So, when SwiftUI has to show the image it will first
reduce the amount of space allocated to the List so that it can show more of the image, but
when it runs out of space there it will just make the window larger.

This isn’t a great result: making the list disappear is a pretty grim user experience, but then

www.hackingwithswift.com20

Responding to image selection

forcing the window to a large size is pretty bad too.

To fix this we need to add some extra modifiers to our views, starting with the List. Like I
said, this has a flexible width and height by default, but we can override that to set a minimum
width or even an exact width if we want.

In this situation I think an exact width works best, because we know how much space is
needed. So, add a frame() modifier to the list, like this:

List(0..<10, selection: $selectedImage) { number in
 Text("Storm \(number + 1)")
}
.frame(width: 150)

Now the window size will still jump around as different images are shown – the last image is
particularly wide, for example – but at least the list never disappears now.

www.hackingwithswift.com 21

Project 1: Storm Viewer

Next we’re going to make the image resizable, so it will take up as much space as there is
currently available in the window rather than forcing it all to resize. This is done using the
resizable() modifier for images, like this:

Image(String(selectedImage))
 .resizable()

That’s fixed the window sizing problem, but if you look carefully you’ll notice it introduces a
new problem: the images get squashed now! The resizable() modifier tells SwiftUI that our
image has a flexible width and height, allowing it to take up all the available space in our UI.
However, that also means it will stretch to fit that space even when that means changing the
aspect ratio of the image – it can now be really tall and thin, for example, even though the
original image wasn’t that shape.

To fix this we need another modifier. Remember when I said, “it’s common to have many
modifiers stacked up for a single view”? Well, here’s a good example of that – we just stack up
the modifiers to create the exact effect we want.

In this case the modifier is called scaledToFit(), which means the storm image will retain its
original aspect ratio while also being resizable. In practice, this means most of the time there
will be some blank space either above and below the image, or to its left and right, depending
on the available space.

Change your image code to this:

Image(String(selectedImage))
 .resizable()
 .scaledToFit()

Press Cmd+R to run the app again and you should see it all behave much better – that was

www.hackingwithswift.com22

Responding to image selection

pretty easy, I think!

www.hackingwithswift.com 23

Finishing touches
This project is done and you could stop here if you wanted. Alternatively, we can make a few
small tweaks that make the whole project feel a bit more polished.

First, you might notice that you can resize the window down to almost nothing at all, which is
strange. It’s common practice to enforce a sensible minimum size for your windows to avoid
this problem, which in this case means attaching a minimum width and height for our split
view – add this frame() to your HSplitView:

.frame(minWidth: 480, minHeight: 320)

Second, compare the window title bar in our app against the window title in Xcode, Finder,
and other apps – do you notice how our title bar goes all the way to the left-hand edge, whereas
in the other apps the list view on the left reaches the very top of the window?

We can get the identical behavior in our app by replacing our HSplitView with a more
advanced view type called NavigationSplitView. This is one of two common ways of
handling navigation in SwiftUI, and allows us to present two pieces of data at the same time: a
sidebar of information on the left, and detail content on the right. Think of the way Notes and

www.hackingwithswift.com24

