
Paul Hudson

J04

HACKING WITH SWIFT

SWIFTUI EDITION

Learn to make iOS
apps with real-world
Swift projectsFREE SAMPLE

Chapter 1
WeSplit
Learn the basics of SwiftUI with your first project

www.hackingwithswift.com2

WeSplit: Introduction
In this project we’re going to be building a check-splitting app that you might use after eating
at a restaurant – you enter the cost of your food, select how much of a tip you want to leave,
and how many people you’re with, and it will tell you how much each person needs to pay.

This project isn’t trying to build anything complicated, because its real purpose is to teach you
the basics of SwiftUI in a useful way while also giving you a real-world project you can
expand on further if you want.

You’ll learn the basics of UI design, how let users enter values and select from options, and
how to track program state. As this is the first project, we’ll be going nice and slow and
explaining everything along the way – subsequent projects will slowly increase the speed, but
for now we’re taking it easy.

This project – like all the projects that involve building a complete app – is broken down into
three stages:

 1. A hands-on introduction to all the techniques you’ll be learning.
 2. A step-by-step guide to build the project.
 3. Challenges for you to complete on your own, to take the project further.

Each of those are important, so don’t try to rush past any of them.

In the first step I’ll be teaching you each of the individual new components in isolation, so you
can understand how they work individually. There will be lots of code, but also some
explanation so you can see how everything works just by itself. This step is an overview: here
are the things we’re going to be using, here is how they work, and here is how you use them.

In the second step we’ll be taking those concepts and applying them in a real project. This is
where you’ll see how things work in practice, but you’ll also get more context – here’s why we
want to use them, and here’s how they fit together with other components.

In the final step we’ll summarizing what you learned, and then you’ll be given a short test to

www.hackingwithswift.com 3

WeSplit

make sure you’ve really understood what was covered. You’ll also be given three
challenges: three wholly new tasks that you need to complete yourself, to be sure you’re able
to apply the skills you’ve learned. We don’t provide solutions for these challenges (so please
don’t write an email asking for them!), because they are there to test you rather than following
along with a solution.

Anyway, enough chat: it’s time to begin the first project. We’re going to look at the techniques
required to build our check-sharing app, then use those in a real project.

So, launch Xcode now, and choose Create A New Xcode Project. You’ll be shown a list of
options, and I’d like you to choose iOS and Single View App, then press Next. On the
subsequent screen you need to do the following:

• For Product Name please enter “WeSplit”.
• For Organization Identifier you can enter whatever you want, but if you have a website you
should enter it with the components reversed: “hackingwithswift.com” would be
“com.hackingwithswift”. If you don’t have a domain, make one up –
 “me.yourlastname.yourfirstname” is perfectly fine.

• For Language please make sure you have Swift selected.
• For User Interface please select SwiftUI.
• Make sure all the checkboxes at the bottom are not checked.

In case you were curious about the organization identifier, you should look at the text just
below: “Bundle Identifier”. Apple needs to make sure all apps can be identified uniquely, and
so it combines the organization identifier – your website domain name in reverse – with the
name of the project. So, Apple might have the organization identifier of “com.apple”, so
Apple’s Keynote app might have the bundle identifier “com.apple.keynote”.

When you’re ready, click Next, then choose somewhere to save your project and click Create.
Xcode will think for a second or two, then create your project and open some code ready for
you to edit.

Later on we’re going to be using this project to build our check-splitting app, but for now

www.hackingwithswift.com4

WeSplit: Introduction

we’re going to use it as a sandbox where we can try out some code.

Let’s get to it!

www.hackingwithswift.com 5

Understanding the basic structure
of a SwiftUI app
When you create a new SwiftUI app, you’ll get a selection of files and maybe 100 lines of
code in total. Most of the code doesn’t do anything, and is just there as placeholders to give
you something to fill in – you can safely ignore it for now, but as you progress through this
course that will change.

Inside Xcode you should see the following files in the space on the left, which is called the
project navigator:

• AppDelegate.swift contains code for managing your app. It used to be common to add
code here, but these days it’s quite rare.

• SceneDelegate.swift contains code for launching one window in your app. This doesn’t do
much on iPhone, but on iPad – where users can have multiple instances of your app open at
the same time – this is important.

• ContentView.swift contains the initial user interface (UI) for your program, and is where
we’ll be doing all the work in this project.

• Assets.xcassets is an asset catalog – a collection of pictures that you want to use in your
app. You can also add colors here, along with app icons, iMessage stickers, and more.

• LaunchScreen.storyboard is a visual editor for creating a small piece of UI to show when
your app is launching.

• Info.plist is a collection of special values that describe to the system how your app works –
which version it is, which device orientations you support, and more. Things that aren’t
code, but are still important.

• Preview Content is a yellow group, with Preview Assets.xcassets inside – this is another
asset catalog, this time specifically for example images you want to use when you’re
designing your user interfaces, to give you an idea of how they might look when the
program is running.

All our work for this project will take place in ContentView.swift, which Xcode will already

www.hackingwithswift.com6

Understanding the basic structure of a SwiftUI app

have opened for you. It has some comments at the top – those things marked with two slashes
at the start – and they are ignored by Swift, so you can use them to add explanations about how
your code works.

Below the comments are ten or so lines of code:

import SwiftUI

struct ContentView: View {
 var body: some View {
 Text("Hello World")
 }
}

struct ContentView_Previews: PreviewProvider {
 static var previews: some View {
 ContentView()
 }
}

Before we start writing our own code, it’s worth going over what all that does, because a
couple of things will be new.

First, import SwiftUI tells Swift that we want to use all the functionality given to us by the
SwiftUI framework. Apple provides us with many frameworks for things like machine
learning, audio playback, image processing, and more, so rather than assume our program
wants to use everything ever we instead say which parts we want to use so they can be loaded.

Second, struct ContentView: View creates a new struct called ContentView, saying that it
conforms to the View protocol. View comes from SwiftUI, and is the basic protocol that must
be adopted by anything you want to draw on the screen – all text, buttons, images, and more
are all views, including your own layouts that combine other views.

www.hackingwithswift.com 7

WeSplit

Third, var body: some View defines a new computed property called body, which has an
interesting type: some View. This means it will return something that conforms to the View
protocol, but that extra some keyword adds an important restriction: it must always be the
same kind of view being returned – you can’t sometimes return one type of thing and other
times return a different type of thing.

We’ll look at this feature more shortly, but for now just remember that it means “one specific
sort of view must be sent back from this property.”

The View protocol has only one requirement, which is that you have a computed property
called body that returns some View. You can (and will) add more properties and methods to
your view structs, but body is the only thing that’s required.

Fourth, Text("Hello World") creates a text view using the string “Hello World”. Text views
are simple pieces of static text that get drawn onto the screen, and will automatically wrap
across multiple lines as needed.

Below the ContentView struct you’ll see a ContentView_Previews struct, which conforms to
the PreviewProvider protocol. This piece of code won’t actually form part of your final app
that goes to the App Store, but is instead specifically for Xcode to use so it can show a preview
of your UI design alongside your code.

These previews use an Xcode feature called the canvas, which is usually visible directly to the
right of your code. You can customize the preview code if you want, and they will only affect
the way the canvas shows your layouts – it won’t change the actual app that gets run.

Xcode can only show the canvas on macOS Catalina or later. If you don’t see the canvas and
are already running Catalina, go to the Editor menu and select Canvas.

If you don’t have Catalina, you’ll need to run your code in the Simulator in order to see how it
looks.

Tip: Very often you’ll find that an error in your code stops Xcode’s canvas from updating –
you’ll see something like “Automatic preview updating paused”, and can press Resume to fix

www.hackingwithswift.com8

Understanding the basic structure of a SwiftUI app

it. As you’ll be doing this a lot, let me recommend an important shortcut: Option+Cmd+P does
the same as clicking Resume.

www.hackingwithswift.com 9

Creating a form
Many apps require users to enter some sort of input – it might be asking them to set some
preferences, it might be asking them to confirm where they want a car to pick them up, it might
be to order food from a menu, or anything similar.

SwiftUI gives us a dedicated view type for this purpose, called Form. Forms are scrolling lists
of static controls like text and images, but can also include user interactive controls like text
fields, toggle switches, buttons, and more.

You can create a basic form just by wrapping the default text view inside Form, like this:

var body: some View {
 Form {
 Text("Hello World")
 }
}

If you’re using Xcode’s canvas, you’ll see it change quite dramatically: before Hello World
was centered on a white screen, but now the screen is a light gray, and Hello World appears in
the top left in white.

What you’re seeing here is the beginnings of a list of data, just like you’d see in the Settings
app. We have one row in our data, which is the Hello World text, but we can add more freely
and have them appear in our form immediately:

Form {
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
}

In fact, you can have as many things inside a form as you want, although if you intend to add
more than 10 SwiftUI requires that you place things in groups to avoid problems.

www.hackingwithswift.com10

Creating a form
more than 10 SwiftUI requires that you place things in groups to avoid problems.

For example, this code shows ten rows of text just fine:

Form {
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
}

But this attempts to show 11, which is not allowed:

Form {
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
}

Tip: In case you were curious why 10 rows are allowed but 11 is not, this is a limitation in

www.hackingwithswift.com 11

WeSplit

SwiftUI: it was coded to understand how to add one thing to a form, how to add two things to a
form, how to add three things, four things, five things, and more, all the way up to 10, but not
beyond – they needed to draw a line somewhere. This limit of 10 children inside a parent
actually applies everywhere in SwiftUI.

If you wanted to have 11 things inside the form you should put some rows inside a Group:

Form {
 Group {
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 }

 Group {
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 Text("Hello World")
 }
}

Groups don’t actually change the way your user interface looks, they just let us work around
SwiftUI’s limitation of ten child views inside a parent – that’s text views inside a form, in this
instance.

If you want your form to look different when split its items into chunks, you should use the
Section view instead. This splits your form into discrete visual groups, just like the Settings
app does:

www.hackingwithswift.com12

Creating a formapp does:

Form {
 Section {
 Text("Hello World")
 }

 Section {
 Text("Hello World")
 Text("Hello World")
 }
}

There’s no hard and fast rule when you should split a form into sections – it’s just there to
group related items visually.

www.hackingwithswift.com 13

Adding a navigation bar
By default iOS allows us to place content anywhere on the screen, including under the system
clock and the home indicator. This doesn’t look great, which is why by default SwiftUI
ensures components are placed in an area where they can’t be covered up by system UI or
device rounded corners – an area known as the safe area.

On an iPhone 11, the safe area spans the space from just below the notch down to just above
the home indicator. You can see it in action with a user interface like this one:

struct ContentView: View {
 var body: some View {
 Form {
 Section {
 Text("Hello World")
 }
 }
 }
}

Try running that in the iOS simulator – press the Play button in the top-left corner of Xcode’s
window, or press Cmd+R.

You’ll see that the form starts below the notch, so by default the row in our form is fully
visible. However, forms can also scroll, so if you swipe around in the simulator you’ll find you
can move the row up so it goes under the clock, making them both hard to read.

A common way of fixing this is by placing a navigation bar at the top of the screen. Navigation
bars can have titles and buttons, and in SwiftUI they also give us the ability to display new
views when the user performs an action.

We’ll get to buttons and new views in a later project, but I do at least want to show you how to
add a navigation bar and give it a title, because it makes our form look better when it scrolls.

www.hackingwithswift.com14

Adding a navigation bar

You’ve seen that we can place a text view inside a section by adding Section around the text
view, and that we can place the section inside a Form in a similar way. Well, we add a
navigation bar in just the same way, except here it’s called NavigationView.

var body: some View {
 NavigationView {
 Form {
 Section {
 Text("Hello World")
 }
 }
 }
}

When you see that code in Xcode’s canvas, you’ll notice there’s a large gray space at the top
of your UI. Well, that’s our navigation bar in action, and if you run your code in the simulator
you’ll see the form slides under the bar as it moves to the top of the screen.

You’ll usually want to put some sort of title in the navigation bar, and you can do that by
attaching a modifier to whatever you’ve placed inside. Modifiers are regular methods with one
small difference: they always return a new instance of whatever you use them on.

Let’s try adding a modifier to set the navigation bar title for our form:

NavigationView {
 Form {
 Section {
 Text("Hello World")
 }
 }
 .navigationBarTitle(Text("SwiftUI"))
}

www.hackingwithswift.com 15

WeSplit

When we attach the .navigationBarTitle() modifier to our form, Swift actually creates a new
form that has a navigation bar title plus all the existing contents you provided.

When you add a title to a navigation bar, you’ll notice it uses a large font for that title. You can
get a small font with a slightly different call to navigationBarTitle():

.navigationBarTitle("SwiftUI", displayMode: .inline)

You can see how Apple uses these large and small titles in the Settings app: the first screen
says “Settings” in large text, and subsequent screens show their titles in small text.

Because it’s so common to use large titles, there’s a shortcut version you can use that lets you
use a plain string rather than a text view:

.navigationBarTitle("SwiftUI")

www.hackingwithswift.com16

Modifying program state
There’s a saying among SwiftUI developers that our “views are a function of their state,” but
while that’s only a handful of words it might be quite meaningless to you at first.

If you were playing a fighting game, you might have lost a few lives, scored some points,
collected some treasure, and perhaps picked up some powerful weapons. In programming, we
call these things state – the active collection of settings that describe how the game is right
now.

When you quit the game that state will get saved as a save game, and when you come back to
the game later you can reload your game to get back to where you were. But while you’re
playing, that’s all just called state: all the integers, strings, Booleans, and more, all stored in
RAM to describe what you are doing right now.

When we say SwiftUI’s views are a function of their state, we mean that the way your user
interface looks – the things people can see and what they can interact with – are determined by
the state of your program. For example, they can’t tap Continue until they have entered their
name in a text field.

That in itself might sound obvious, but this is actually very different from the alternative that
was used previously: your user interface was determined by a sequence of events. So, what the
user sees right now is because they’ve been using your app for a while, have tapped various
things, might have logged in or refreshed their data, and so on.

The “sequence of events” approach means it’s very hard to store the state of an app, because
the only way to get back the perfect state would be to play back the exact sequence of events
that the user performed. This is why so many apps just don’t even try to save your state, even
slightly – your news app won’t go back to the last article you were reading, Twitter won’t
remember if you were part-way through typing a reply to someone, and Photoshop forgets any
undo state you had stacked up.

Let’s put this into practice with a button, which in SwiftUI can be created with a title string
and an action closure that gets run when the button is tapped:

www.hackingwithswift.com 17

WeSplit
and an action closure that gets run when the button is tapped:

struct ContentView: View {
 var tapCount = 0

 var body: some View {
 Button("Tap Count: \(tapCount)") {
 self.tapCount += 1
 }
 }
}

That code looks reasonable enough: create a button that says “Tap Count” plus the number of
times the button has been tapped, then add 1 to tapCount whenever the button is tapped.

However, it won’t build; that’s not valid Swift code. You see, ContentView is a struct, which
might be created as a constant. If you think back to when you learned about structs, that means
it’s immutable – we can’t change its values freely.

When creating struct methods that want to change properties, we need to add the mutating
keyword: mutating func doSomeWork(), for example. However, Swift doesn’t let us make
mutating computed properties, which means we can’t write mutating var body: some View –
it just isn’t allowed.

This might seem like we’re stuck at an impasse: we want to be able to change values while our
program runs, but Swift won’t let us because our views are structs.

Fortunately, Swift gives us a special solution called a property wrapper: a special attribute we
can place before our properties that effectively gives them super-powers. In the case of storing
simple program state like the number of times a button was tapped, we can use a property
wrapper from SwiftUI called @State, like this:

struct ContentView: View {
 @State var tapCount = 0

www.hackingwithswift.com18

Modifying program state

 var body: some View {
 Button("Tap Count: \(tapCount)") {
 self.tapCount += 1
 }
 }
}

That small change is enough to make our program work, so you can now build it and try it out.

@State allows us to work around the limitation of structs: we know we can’t change their
properties because structs are fixed, but @State allows that value to be stored separately by
SwiftUI in a place that can be modified.

Yes, it feels a bit like a cheat, and you might wonder why we don’t use classes instead – they
can be modified freely. But trust me, it’s worthwhile: as you progress you’ll learn that SwiftUI
destroys and recreates your structs frequently, so keeping them small and simple structs is
important for performance.

Tip: There are several ways of storing program state in SwiftUI, and you’ll learn all of them.
@State is specifically designed for simple properties that are stored in one view. As a result,
Apple recommends we add private access control to those properties, like this: @State
private var tapCount = 0.

www.hackingwithswift.com 19

Binding state to user interface
controls
SwiftUI’s @State property wrapper lets us modify our view structs freely, which means as our
program changes we can update our view properties to match.

However, things are a little more complex with user interface controls. For example, if you
wanted to create an editable text box that users can type into, you might create a SwiftUI view
like this one:

struct ContentView: View {
 var body: some View {
 Form {
 TextField("Enter your name")
 Text("Hello World")
 }
 }
}

That tries to create a form containing a text field and a text view. However, that code won’t
compile because SwiftUI wants to know where to store the text in the text field.

Remember, views are a function of their state – that text field can only show something if it
reflects a value stored in your program. What SwiftUI wants is a string property in our struct
that can be shown inside the text field, and will also store whatever the user types in the text
field.

So, we could change the code to this:

struct ContentView: View {
 var name = ""

 var body: some View {

www.hackingwithswift.com20

Binding state to user interface controls

 Form {
 TextField("Enter your name", text: name)
 Text("Hello World")
 }
 }
}

That adds a name property, then uses it to create the text field. However, that code still won’t
work because Swift needs to be able to update the name property to match whatever the user
types into the text field, so you might use @State like this:

@State private var name = ""

But that still isn’t enough, and our code still won’t compile.

The problem is that Swift differentiates between “show the value of this property here” and
“show the value of this property here, but write any changes back to the property.”

In the case of our text field, Swift needs to make sure whatever is in the text is also in the
name property, so that it can fulfill its promise that our views are a function of their state – that
everything the user can see is just the visible representation of the structs and properties in our
code.

This is what’s called a two-way binding: we bind the text field so that it shows the value of our
property, but we also bind it so that any changes to the text field also update the property.

In Swift, we mark these two-way bindings with a special symbol so they stand out: we write a
dollar sign before them. This tells Swift that it should read the value of the property but also
write it back as any changes happen.

So, the correct version of our struct is this:

struct ContentView: View {
 @State private var name = ""

www.hackingwithswift.com 21

WeSplit

 var body: some View {
 Form {
 TextField("Enter your name", text: $name)
 Text("Hello World")
 }
 }
}

Try running that code now – you should find you can tap on the text field and enter your name,
as expected.

Before we move on, let’s modify the text view so that it shows the user’s name directly below
their text field:

Text("Your name is \(name)")

Notice how that uses name rather than $name? That’s because we don’t want a two-way
binding here – we want to read the value, yes, but we don’t want to write it back somehow,
because that text view won’t change.

So, when you see a dollar sign before a property name, remember that it creates a two-way
binding: the value of the property is read, but also written.

www.hackingwithswift.com22

Creating views in a loop
It’s common to want to create several SwiftUI views inside a loop. For example, we might
want to loop over an array of names and have each one be a text view, or loop over an array of
menu items and have each one be shown as an image.

SwiftUI gives us a dedicated view type for this purpose, called ForEach. This can loop over
arrays and ranges, creating as many views as needed. Even better, ForEach doesn’t get hit by
the 10-view limit that would affect us if we had typed the views by hand.

ForEach will run a closure once for every item it loops over, passing in the current loop item.
For example, if we looped from 0 to 100 it would pass in 0, then 1, then 2, and so on.

For example, this creates a form with 100 rows:

Form {
 ForEach(0 ..< 100) { number in
 Text("Row \(number)")
 }
}

Because ForEach passes in a closure, we can use shorthand syntax for the parameter name,
like this:

Form {
 ForEach(0 ..< 100) {
 Text("Row \($0)")
 }
}

ForEach is particularly useful when working with SwiftUI’s Picker view, which lets us show
various options for users to select from.

To demonstrate this, we’re going to define a view that:

www.hackingwithswift.com 23

WeSplitTo demonstrate this, we’re going to define a view that:

 1. Has an array of possible student names.
 2. Has an @State property storing the currently selected student.
 3. Creates a Picker view asking users to select their favorite, using a two-way binding to the
@State property.

 4. Uses ForEach to loop over all possible student names, turning them into a text view.

Here’s the code for that:

struct ContentView: View {
 let students = ["Harry", "Hermione", "Ron"]
 @State private var selectedStudent = "Harry"

 var body: some View {
 Picker("Select your student", selection:
$selectedStudent) {
 ForEach(0 ..< students.count) {
 Text(self.students[$0])
 }
 }
 }
}

There’s not a lot of code in there, but it’s worth clarifying a few things:

 1. The students array doesn’t need to be marked with @State because it’s a constant; it isn’t
going to change.

 2. The selectedStudent property starts with the value “Harry” but can change, which is why
it’s marked with @State.

 3. The Picker has a label, “Select your student”, which tells users what it does and also
provides something descriptive for screen readers to read aloud.

 4. The Picker has a two-way binding to selectedStudent, which means it will start showing a
selection of 0 but update the property as the user moves the picker.

www.hackingwithswift.com24

