
Paul Hudson

HACKING WITH SWIFT

COMPLETE TUTORIAL COURSE

Learn SiriKit, iMessage apps,
rich notifications, and more
with real-world projects

ADVANCED

iOS
VOLUME ONE

FREE SAMPLE

Chapter 1
Happy Days

www.hackingwithswift.com2

Setting up
In this project we’re going to build Happy Days: an app that stores photos the user has
selected, along with voice recordings recounting what’s in the picture.

To add some spice to the project, we’ll be using the iOS Speech framework to transcribe the
user’s voice recordings, then store that transcription in Core Spotlight. iOS also gives us the
ability to search our Spotlight index inside the app using the new CSSearchQuery class, so
we’ll be drawing on that too.

Launch Xcode, create a new project using the Single View App template, and give it the name
HappyDays. All set for some Swift? Let’s do it!

www.hackingwithswift.com 3

Building the user interface
Happy Days is going to display the user’s photos inside a collection view controller, which
will itself be inside a navigation controller. It will also need a second view controller for
asking permissions when the app first runs: we need to access the user’s photo library and
microphone, and also request permission to transcribe their speech – Apple are predictably
cautious about apps transcribing speech without user permission!

The Single View App template gave us a regular view controller, so we can use that for our
permissions view controller. You could, if you wanted, do without this and just request
permissions on demand, but because we’re asking for three at once I found it was a more
pleasant experience to ask for them when the app first launches rather than confuse the user
with requests later on.

Let’s start with the permissions first run screen, because it’s easy enough. Select the current
view controller, and embed it inside a navigation controller by going to Editor > Embed In >
Navigation Controller. You’ll see a simulated navigation bar appear in the view controller –
double-click in the center of that to edit the title, and write “Welcome”.

www.hackingwithswift.com4

Building the user interface

Next, drop a Vertical Stack View object into the view controller anywhere inside – we’ll be
using this to host a label describing what’s going on, as well as a button let users proceed.
Having these two inside a stack view allows us to center the stack inside the parent view, even
when the text resizes.

Drag a new label into the stack view, and you’ll see the stack view shrink so that it wraps itself
around the label. Please also drag a button into the stack view, below the label – again you’ll
see the stack view resize so that it fits them both neatly.

www.hackingwithswift.com 5

Happy Days

We want to position the stack view so that it fits neatly onto the screen. To do that, Ctrl-drag
from the stack view to the parent view to create constraints, and select Center Horizontally in
Safe Area, Center Vertically in Safe Area. Finally, then Equal Widths. Having the stack view
fill the view horizontally doesn’t look great, though, so we’re going to make a tiny change to
that last constraint to pull it in from the edges.

www.hackingwithswift.com6

Building the user interface

Make sure the stack view is selected, then go to the size inspector (Alt+Cmd+5) so you can see
the constraints we just created. Look for the one marked “Equal width to: Superview” and
click the Edit button next to it. In the popup that appears, enter -40 for the Constant value so
that the stack view is 40 points slimmer than its parent.

That’s all our layout done, but before we update the frames we need to make a couple more
changes. First, select the label:

• Set its font size to 20.
• Set its text to be center aligned.
• Set its Lines value to 0.

Now give it this text: “In order to work fully, Happy Days needs to read your photo library,
record your voice, and transcribe what you said. When you click the button below you will be
asked to grant those permissions, but you can change your mind later in Settings.”

www.hackingwithswift.com 7

Happy Days

Second: select the button, then set its font size to 25 and its text to “Continue”.

By default stack views place their arranged views directly adjacent to each other, which
doesn’t look that great. To fix that, change Spacing to be 50 and you’ll see the label and button
jump apart.

That’s all our layout done, so click in the whitespace above the label to select the main view.
Now go to the Editor menu and choose Resolve Auto Layout Issues > Update Frames – make
sure you choose the one under “All Views in View Controller”.

Creating the main view controller
We’re done with the first run screen for the time being – we’ll come back to it soon enough to
hook it up to code. Now let’s turn to the main view controller: the part that lets the user interact
with their memories.

Start by dragging a new collection view controller onto your storyboard – that’s the one in a

www.hackingwithswift.com8

Building the user interface

yellow circle, not the plain collection view. Again, please embed it in a navigation controller:
click the yellow circle directly above the new view, then choose Editor > Embed In >
Navigation Controller.

We get one collection view cell prototype by default, but it’s pretty small. To make it larger,
click the large white space in the view to select the collection view, then go to the size
inspector and change Cell Size from 50x50 to 200x200. While you’re there, change Min
Spacing to 20 and 20 for the “For Cells” and “For Lines” fields. We’ll be using that to show
photos.

Go back to the attributes inspector for the collection view, then check the box marked Section
Header – we’ll be using that to hold our search box. But first: give the collection view a dark
gray background color, so that the images we load are prominent.

www.hackingwithswift.com 9

Happy Days

Right now we have one 200x200 collection view cell prototype taking up most of the screen.
This is going to be used to hold the photos in our collection view, so please add an image view
to it now. Xcode will make the image view a completely different size and shape to the cell –
the easiest way to fix that is by going to the attributes inspector and hand-typing the values 0
for X and Y, and 200 for Width and Height. Now select the new image view in the document
outline, then go to Editor > Resolve Auto Layout Issues > Add Missing Constraints.
Technically the image view was already selected, but Xcode occasionally gets confused when
you’ve been typing into one of the inspectors!

As for the collection view’s section header, please drag a search bar object into there. These
things are a fixed size, but you might need to ensure it has its X and Y position set to 0. I found
that changing the Search Style to Minimal gave the best look, but you’re welcome to
experiment. If you always want to go with the minimal style, you should know that it defaults
to black text, which looks pretty poor on a dark gray background. There’s no color picker to
change that in Xcode, so instead we’re going to modify a key path using the identity inspector
– something you don’t really have to do very much, thankfully.

Make sure the search bar is selected, then press Alt+Cmd+3 to activate the identity inspector.
Under “User Defined Runtime Attributes” click the + button, then double-click where it says
“keyPath” in the newly inserted row. Replace “keyPath” with “searchField.textColor”, then

www.hackingwithswift.com10

Building the user interface

change Type from “Boolean” to “Color”. Doing that will change the Value field from a
checkbox to a color well, so click that now and change it to white. It might seem like a bit of a
hack, but that’s the only way to do it without poking around in code!

Finally, double-click the simulated navigation bar and give it the title Happy Days.

Connecting the interface to code
Although the drag-and-drop parts of our user interface are done, but we still need to make a
few changes so that everything sits together neatly:

 1. Ensure the collection view’s navigation controller is the initial view controller.
 2. Set a delegate for the search bar so we can act on the user’s typing.
 3. Configure re-use identifiers for the collection view cell and section header.
 4. Give the first run screen a storyboard identifier so we can create it on demand.
 5. Create a class for the collection view controller.
 6. Create a class for the collection view cell that will hold images so that we can reference the

image view in code.
 7. Set up outlets and actions.

Let’s start with number 1: making the collection view’s navigation controller the initial view
controller for the app. That’s trivial: click the navigation controller, select the attributes
inspector, then check the box marked Is Initial View Controller. One down!

www.hackingwithswift.com 11

Happy Days

Number 2: set a delegate for the search bar so that we can act on the user’s typing. To make
this happen, Ctrl-drag from the search bar to Collection View Controller in the document
outline, then select Delegate from the popup that appears. Boom: two down. Who said coding
was hard?

Number 3: configure re-use identifiers for the collection view cell and section header. Because
both our cell and header have child views that occupy their full space, you should use the
document to select each item. So, select Collection Reusable View then enter “Header” for the
Identifier value in the attributes inspector. Then select Collection View Cell and give it the
identifier “Memory”.

Number 4: give the first run screen a storyboard identifier so we can create it on demand. To
do this, select the navigation controller that wraps the first run screen, then choose the identity
inspector. Look for the Storyboard ID field in there, and give it the value FirstRun.

Number 5: create a class for the collection view controller. This is the first non-trivial task, but
even then we we can re-use the existing ViewController.swift file given to us by the template.

To create a class for the collection view controller, choose File > New > File, then select iOS >
Source > Cocoa Touch Class and click Next. Make the new class inherit from
UIViewController, give it the name MemoriesViewController, then click Next again. In the

www.hackingwithswift.com12

Building the user interface

final screen, make sure Group is set to Happy Days with the yellow folder icon next to it, then
click Create.

Note: if you’re paying attention, you should have read that last paragraph and thought “why
are we subclassing MemoriesViewController from UIViewController when it’s clearly a
UICollectionViewController?” The answer is simple: Xcode’s default code for
UICollectionViewController subclasses is suboptimal, and we can do better.

Now let’s connect that new class to our user interface. Because we created a regular
UIViewController subclass, we need to make one tiny tweak in
MemoriesViewController.swift before we can go into IB. Open that file, and change this line:

class MemoriesViewController: UIViewController {

To this:

class MemoriesViewController: UICollectionViewController {

Now open Main.storyboard in Interface Builder, and select the Collection View Controller. We
need to tell IB that this view controller is an instance of the MemoriesViewController we just
created, so go to the identity inspector and change Class to “MemoriesViewController”. That’s
task number 5 done!

On to task number 6: create a class for the collection view cell that will hold images so that we
can reference the image view in code. This isn’t strictly needed because the cell is so trivial we

www.hackingwithswift.com 13

Happy Days

could just use a tag, but later on you’ll want to expand this so adding a full class is a smart
move.

Go to File > New > File, then choose iOS > Source > Cocoa Touch Class and press Next.
Make it a subclass of UICollectionViewCell then name it “MemoryCell” and click Next. As
before, make sure you use Happy Days with the yellow folder icon for your group, then click
Create.

That creates the class, so now it’s just a matter of connecting the cell prototype to the class in
IB. To do that, select “Memory” in the document outline, then use the identity inspector to
change the Class value to “MemoryCell”.

And now the final task, number 7: set up outlets and actions. We’ll do the first run screen first,
so select the first run controller in the document outline, then change to the assistant editor so
we can see its code while working in IB. This works sometimes and other times either selects
the wrong thing or selects nothing at all - in theory you should have IB in the top pane, and
ViewController.swift in the bottom pane. If you have something else (or nothing!) in the
bottom pane, click where it says Automatic and choose Manual > Happy Days > Happy Days
> ViewController.swift.

I’d like you to create an outlet for the label called helpLabel, and an action for the button
called requestPermissions.

www.hackingwithswift.com14

Building the user interface

While running through this project a couple of times for testing, Xcode would occasionally
refuse to create an outlet because it somehow couldn’t find ViewController – if this happens
to you, select your project icon in the project navigator, then choose HappyDays under the
Targets list. Select the Build Phases tab, then open Compile Sources – you should see
ViewController.swift in there. Select it, then click - to stop it from being built, then click + and
re-add it. For whatever reason, that was the only thing I found that would clear the glitch, but
hopefully it doesn’t happen to you!

Anyway, back to Main.storyboard: you should have an outlet for the label, and an action for
the button like this:

@IBAction func requestPermissions(_ sender: AnyObject) {
}

The other outlet we’re going to create is for the image view inside MemoryCell. Find the
“Memory” collection view cell prototype in your IB document outline, then use manual
selection in the bottom pane of the assistant editor to open MemoryCell.swift. Now Ctrl-drag

www.hackingwithswift.com 15

Happy Days

from the image view to MemoryCell.swift to create a property called imageView.

Finally, we’re done with Interface Builder, so switch to back to the standard editor view and
open ViewController.swift for editing.

www.hackingwithswift.com16

Permissions! Permissions
everywhere!
We need three different kinds of permissions to make this app work. I’m going to code the app
so that it requires all three to work, but you’re welcome to make it more fine-grained if you
want. If any of the permissions fail, I’m going to rewrite the contents of helpLabel with a
meaningful message so that the user can go to Settings and grant the permissions by hand if
they change their mind.

The permissions system in iOS is all asynchronous, which means that you make a request then
receive a callback when the user has made a choice. These callbacks can happen on any thread,
so you should always push work to the main thread before taking any action – particularly if
you’re manipulating the user interface. We’re going to use these callbacks to create a smooth
chain of permission requests: rather than bombard the user with three requests at once, we’re
going to request one, wait for a callback, request another, wait for a callback, then request the
last one.

Each of these permission requests are done on a different framework: AVFoundation handles
the microphone, Photos handles accessing user photos, and Speech handles transcription. So,
please add these three imports near the top of ViewController.swift:

import AVFoundation
import Photos
import Speech

With that done, we can start the authorization process – Photos authorization is as good a place
as any, so we’ll start there.

To get access to their user’s photo library, we need to call requestAuthorization() on the
PHPhotoLibrary class. You need to give it a closure that will be called when the user has
either granted or denied permission to access the photo library, and you’ll be given a parameter
to work with that represents the user’s permission status. If that’s set to .authorized it means

www.hackingwithswift.com 17

Happy Days

we’re good to continue, otherwise we’ll show a message in the help label and stop.

Add this method to ViewController.swift:

func requestPhotosPermissions() {
 PHPhotoLibrary.requestAuthorization { [unowned self]
authStatus in
 DispatchQueue.main.async {
 if authStatus == .authorized {
 self.requestRecordPermissions()
 } else {
 self.helpLabel.text = "Photos permission was
declined; please enable it in settings then tap Continue
again."
 }
 }
 }
}

You’ll get an error because we haven’t written self.requestRecordPermissions() just yet -
we’ll do that in just a moment.

First, though: notice that I’m pushing all the work to the main thread using
DispatchQueue.main.async. This might be your first exposure to Grand Central Dispatch in
Swift 3, but I hope you can appreciate how marvelously simple it is compared to GCD in Swift
2.2!

Next: the requestRecordPermissions() method. This is almost identical to requesting access
to the photo library, except now we call requestRecordPermission() on the shared
AVAudioSession instance. This will again call a closure, but the parameter is simpler this
time: we’ll get a boolean that’s true if we’ve been given access to the microphone.

As before, we immediately push our work to the main thread to avoid problems, then either
call another method to continue the permissions requests, or set the help label to something

www.hackingwithswift.com18

Permissions! Permissions everywhere!

meaningful. Here’s the code:

func requestRecordPermissions() {
 AVAudioSession.sharedInstance().requestRecordPermission()
{ [unowned self] allowed in
 DispatchQueue.main.async {
 if allowed {
 self.requestTranscribePermissions()
 } else {
 self.helpLabel.text = "Recording permission was
declined; please enable it in settings then tap Continue
again."
 }
 }
 }
}

The last permissions method we need to write is requestTranscribePermissions(), which is
almost identical to requesting permissions to Photos – the only difference is that you call the
method on the new SFSpeechRecognizer class rather than PHPhotoLibrary. Here’s the code:

func requestTranscribePermissions() {
 SFSpeechRecognizer.requestAuthorization { [unowned self]
authStatus in
 DispatchQueue.main.async {
 if authStatus == .authorized {
 self.authorizationComplete()
 } else {
 self.helpLabel.text = "Transcription permission was
declined; please enable it in settings then tap Continue
again."
 }
 }

www.hackingwithswift.com 19

Happy Days

 }
}

That’s the last of the permissions work. We need to make two further additions, though. First,
add this method to handle dismissing the first run controller when permissions are fully
granted:

func authorizationComplete() {
 dismiss(animated: true)
}

Second, we need to kick off the whole permissions flow by adding a call to
requestPhotosPermissions() inside the requestPermissions() method we created earlier, like
this:

@IBAction func requestPermissions(_ sender: AnyObject) {
 requestPhotosPermissions()
}

That’s all the code for permissions: we request photo library access, then request microphone
access, then request transcription access. However, even though the code is complete and
correct, it won’t work quite yet because we need to tell the user why we’re requesting the
permissions.

This is done in the Info.plist file: we need to add three keys there to describe why we’re asking
for each of the permissions. Please add the keys NSPhotoLibraryUsageDescription,
NSMicrophoneUsageDescription, and NSSpeechRecognitionUsageDescription. Give each
of them some meaningful text - something like “We use this to let you import photos”, “We
use this to record your narration”, and “We use this to transcribe your narration” respectively.

www.hackingwithswift.com20

Permissions! Permissions everywhere!

We’re done with ViewController.swift – it’s sole purpose is to guide the user through all the
permissions requests, so all that’s left to do is call it at the right time. We know when that
“right time” is inside the viewDidAppear() method of MemoriesViewController: we can
check what permissions we have, and show ViewController if any are lacking.

Open MemoriesViewController.swift, and add these three just above the existing import
UIKit line:

import AVFoundation
import Photos
import Speech

I’m going to encapsulate the permissions check in its own method, checkPermissions(),
because it’s possible you’ll want to check this in other places later on. All it’s going to do is go
through PHPhotoLibrary, AVAudioSession, and SFSpeechRecognizer to make sure each of
them have permissions granted, then combine them all in to a single boolean, authorized,
which can be checked. If that’s false, it means we’re missing at least one permission, so we’ll
show the “FirstRun” view controller, which is the navigation controller that contains the
permissions view.

Here’s the checkPermissions() method – please put this inside
MemoriesViewController.swift:

www.hackingwithswift.com 21

Happy Days

func checkPermissions() {
 // check status for all three permissions
 let photosAuthorized = PHPhotoLibrary.authorizationStatus()
== .authorized
 let recordingAuthorized =
AVAudioSession.sharedInstance().recordPermission == .granted
 let transcibeAuthorized =
SFSpeechRecognizer.authorizationStatus() == .authorized

 // make a single boolean out of all three
 let authorized = photosAuthorized && recordingAuthorized &&
transcibeAuthorized

 // if we're missing one, show the first run screen
 if authorized == false {
 if let vc =
storyboard?.instantiateViewController(withIdentifier:
"FirstRun") {
 navigationController?.present(vc, animated: true)
 }
 }
}

With that method written, all we need to do now is call it inside viewDidAppear(). Add this
now:

override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)

 checkPermissions()
}

www.hackingwithswift.com22

Permissions! Permissions everywhere!

Done!

At this point we finally have some code that can be run, so press Cmd+R to build and launch
in the simulator. All being well you should see the first run screen appear and ask for various
permissions – you may not see the microphone permission appear in the simulator, but it will
appear on real devices.

When the final permission is granted, the welcome screen will disappear and you’ll see the
empty collection view controller. Let’s tackle that now…

www.hackingwithswift.com 23

Importing into the collection view
The first big task we’re going to tackle is to fill our collection view with pictures the user has
selected. The final version of the app will have pictures, audio, and text for each memory, so
we need some sort of way to tie this together.

We could use a custom class for this task: by making it conform to NSCoding we could read
and write whole arrays of data using something like NSKeyedArchiver. However, I think that
would prove inefficient: picture data can easily be 10MB depending on the device you have,
and there’s audio data too – we wouldn’t want to have to write all that data out when the user
changed one small part.

So instead we’re going to go for something much simpler: every memory will have a unique
name, and we’ll just hang different file extensions off that unique name to provide the various
components. For example, if a memory had the name abc123, we would have the following
files:

• abc123.jpg: the full-size picture the user imported.
• abc123.thumb: the thumbnail-sized picture
• abc123.m4a: the audio narration they recorded
• abc123.txt: the plain text transcription of what they said.

Of those, only the first two can be guaranteed to exist - the latter two won’t exist until the user
has added narration and we’ve transcribed it.

Working with files used to be quite easy in Swift because you could read and write files using
path strings. However, in the name of safety, Apple has slowly been forcing us to migrate to
URLs for files, which in turn means we need to litter optionals and try/catch code throughout
our code. It’s safer in the long term, but it might frustrate you until you get the hang of it!

Loading memories
Let’s start with the easiest part: loading memories into an array. We’re going to create a

www.hackingwithswift.com24

